torch、torch-scatter版本依赖和下载安装教程

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


提示:
如果查看【Windows11】环境下安装CUDA11.6+Anaconda3+pyToach可以参考
链接地址

查看与自己当前安装的torch版本,cuda版本

在终端输入conda list
在这里插入图片描述
我的cuda版本是11.6,torch版本是1.13.1

二、下载对应版本的torch_scatter、torch_sparse

下载地址

在这里插入图片描述
选择你当前的版本,进入,选择合适的torch-scatter下载

在这里插入图片描述

三、打开终端进行安装

代码如下(示例):

# pip install 文件地址
pip install "C:\Users\shenj\Downloads\torch_scatter-2.0.9-cp37-cp37m-win_amd64.whl"

在这里插入图片描述

到此torch-scatter安装成功!!!

### 下载并安装 `torch_scatter` 对于希望在特定环境中下载并安装 `torch_scatter` 的用户来说,了解如何匹配合适的 PyTorch 版本以及 CUDA 或 ROCm 后端版本至关重要。为了确保兼容性性能优化,建议先确认已安装的 PyTorch 及其支持的硬件加速器(如 CUDA)版本。 #### 确认现有环境配置 可以通过 Python 解释器执行如下命令来检查当前系统的 PyTorch CUDA 版本: ```python import torch print(torch.__version__) print(torch.version.cuda) ``` 此操作有助于确定应选择哪个版本的 `torch_scatter` 来保持与现有设置的一致性[^4]。 #### 访问官方资源获取最新信息 访问 [PyTorch Scatter 文档页面](https://pytorch-scatter.readthedocs.io/en/latest/) 获取最新的安装指南支持的功能列表[^3]。该网站不仅提供了详细的 API 描述,还包含了不同操作系统下的安装说明。 #### 使用 pip 安装预编译包 如果目标平台上存在适用于所使用的 PyTorch/CUDA 组合的 wheel 文件,则可以直接通过 pip 进行安装。例如,在 Windows 上针对 PyTorch 1.7.1 CUDA 11.0 的组合,可以尝试以下命令: ```bash pip install torch-1.7.1+cu110.html ``` 上述 URL 中的路径应当根据实际需求调整至正确的 PyTorch CUDA 版本号[^2]。 #### 编译源码作为备选方案 当无法找到适合的 pre-built binary 轮子时,可以从 GitHub 存储库克隆项目并自行构建。这通常涉及安装必要的开发工具链依赖项之后运行 setup.py: ```bash git clone https://github.com/rusty1s/pytorch_scatter.git cd pytorch_scatter python setup.py install ``` 这种方法虽然更复杂但也更加灵活,允许定制化修改以适应特殊的需求或环境约束。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值