洛谷P1447 [NOI2010]能量采 莫比乌斯反演+整除分块


洛谷P1447 [NOI2010]能量采集


标签

  • 莫比乌斯反演
  • 整除分块

前言


简明题意

  • 给一个 n ∗ m n*m nm的矩阵,如果从 ( 0 , 0 ) 到 ( x , y ) (0,0)到(x,y) (0,0)(x,y)的连线上点的数量是 c n t cnt cnt(不包含 ( 0 , 0 ) , ( x , y ) (0,0),(x,y) (0,0),(x,y)),那么点 ( x , y ) (x,y) (x,y)的花费就是 2 ∗ c n t + 1 2*cnt +1 2cnt+1.问所有点的花费之和。

思路

  • ( 0 , 0 ) 到 ( x , y ) (0,0)到(x,y) (0,0)(x,y)连线上点的数量是 g c d ( x , y ) gcd(x,y) gcd(x,y)(包含 ( x , y ) (x,y) (x,y)),那么按照题意得 c n t cnt cnt就应该是 g c d ( x , y ) − 1 gcd(x,y)-1 gcd(x,y)1,那么所有点得贡献和就是:
    ∑ i = 1 n ∑ j = 1 m ( 2 ∗ ( g c d ( i , j ) − 1 ) + 1 ) \sum_{i=1}^n\sum_{j=1}^m\left(2*\left(gcd(i,j)-1\right)+1\right) i=1nj=1m(2(gcd(i,j)1)+1)
  • 提出常数,原式就变成:
    2 ∗ ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) − n ∗ m 2*\sum_{i=1}^{n}\sum_{j=1}^mgcd(i,j)-n*m 2i=1nj=1mgcd(i,j)nm
  • 所以,现在的难点就在于如何求 ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) \sum\limits_{i=1}^{n}\sum\limits_{j=1}^mgcd(i,j) i=1nj=1mgcd(i,j)。但这个实际很简单。我们改为枚举 g c d ( i , j ) gcd(i,j) gcd(i,j),就变成:
    ∑ x = 1 n ( x ∗ ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = x ] ) \sum_{x=1}^n\left(x*\sum\limits_{i=1}^{n}\sum\limits_{j=1}^m[gcd(i,j)==x]\right) x=1n(xi=1nj=1m[gcd(i,j)==x])
  • ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = x ] \sum\limits_{i=1}^{n}\sum\limits_{j=1}^m[gcd(i,j)==x] i=1nj=1m[gcd(i,j)==x]的求法在我的另一篇博客中详细说明了,请戳这里,我们现在直接把结论摆出来:
    ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = x ] = ∑ d = 1 [ n x ] ( μ ( d ) ∗ [ n d x ] ∗ [ m d x ] ) \sum\limits_{i=1}^{n}\sum\limits_{j=1}^m[gcd(i,j)==x]=\sum_{d=1}^{[\frac nx]}\left( \mu(d)*[\frac {n}{dx}]*[\frac {m}{dx}]\right) i=1nj=1m[gcd(i,j)==x]=d=1[xn](μ(d)[dxn][dxm])
  • 再把这个带入原式,就得到了:
    ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) = ∑ x = 1 n ( x ∗ ∑ d = 1 [ n x ] ( μ ( d ) ∗ [ n d x ] ∗ [ m d x ] ) ) \sum_{i=1}^{n}\sum_{j=1}^mgcd(i,j)=\sum_{x=1}^{n}\left(x*\sum_{d=1}^{[\frac nx]}\left( \mu(d)*[\frac {n}{dx}]*[\frac {m}{dx}]\right)\right) i=1nj=1mgcd(i,j)=x=1nxd=1[xn](μ(d)[dxn][dxm])
  • 预处理用线筛 O ( n ) O(n) O(n) x x x的枚举是 O ( n ) O(n) O(n),后面那一坨可以整除分块,复杂度 O ( n x ) O(\sqrt{\frac nx}) O(xn )。上面式子的复杂度是 O ( n + n ∗ n x ) O(n+n*\sqrt{\frac nx}) O(n+nxn ),就是 O ( n ∗ n x ) O(n*\sqrt{\frac nx}) O(nxn )

注意事项


总结

  • ( 0 , 0 ) (0,0) (0,0) ( x , y ) (x,y) (x,y)连线上点的数量是 g c d ( x , y ) gcd(x,y) gcd(x,y),包含 ( x , y ) 但 不 包 含 ( 0 , 0 ) (x,y)但不包含(0,0) (x,y)(0,0)

AC代码

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn = 1e5 + 10;

int n, m;

bool no_prime[maxn];
int prime[maxn], mu[maxn], pre_mu[maxn];
int shai(int n)
{
   int cnt = 0;
   mu[1] = 1;

   for (int i = 2; i <= n; i++)
   {
   	if (!no_prime[i])
   		prime[++cnt] = i, mu[i] = -1;

   	for (int j = 1; j <= cnt && prime[j] * i <= n; j++)
   	{
   		no_prime[prime[j] * i] = 1;
   		mu[prime[j] * i] = i % prime[j] == 0 ? 0 : -mu[i];
   		if (i % prime[j] == 0) break;
   	}
   }

   for (int i = 1; i <= n; i++)
   	pre_mu[i] = pre_mu[i - 1] + mu[i];

   return cnt;
}

int cal2(int n, int m, int x)
{
   n = n / x, m = m / x;

   int l = 1, r, ans = 0;
   while (l <= n)
   {
   	r = min(n / (n / l), m / (m / l));
   	ans += (pre_mu[r] - pre_mu[l - 1]) * (n / l) * (m / l);
   	l = r + 1;
   }
   return ans;
}


void solve()
{
   scanf("%d%d", &n, &m);
   if (m < n) swap(n, m);
   shai(m);

   long long ans = 0;
   for (int x = 1; x <= n; x++)
   	ans += 1ll * x * cal2(n, m, x);

   printf("%lld", 2 * ans - n * m);
}

int main()
{
   solve();
   return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
P2375 [NOI2014] 动物园是一道经典的动态规划题目,以下是该题的详细题意和解题思路。 【题意描述】 有两个长度为 $n$ 的整数序列 $a$ 和 $b$,你需要从这两个序列中各选出一些数,使得这些数构成一个新的序列 $c$。其中,$c$ 序列中的元素必须在原序列中严格递增。每个元素都有一个价值,你的任务是选出的元素的总价值最大。 【解题思路】 这是一道经典的动态规划题目,可以用记忆化搜索的方法解决,也可以用递推的方法解决。 记忆化搜索的代码如下: ```c++ #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int MAXN = 1005; int dp[MAXN][MAXN], a[MAXN], b[MAXN], n; int dfs(int x, int y) { if (dp[x][y] != -1) return dp[x][y]; if (x == n || y == n) return 0; int res = max(dfs(x + 1, y), dfs(x + 1, y + 1)); if (a[x] > b[y]) { res = max(res, dfs(x, y + 1) + b[y]); } return dp[x][y] = res; } int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); for (int i = 0; i < n; i++) scanf("%d", &b[i]); memset(dp, -1, sizeof(dp)); printf("%d\n", dfs(0, 0)); return 0; } ``` 其中,dp[i][j]表示选到a数组中第i个元素和b数组中第j个元素时的最大价值,-1表示未计算过。dfs(x,y)表示选到a数组中第x个元素和b数组中第y个元素时的最大价值,如果dp[x][y]已经计算过,则直接返回dp[x][y]的值。如果x==n或者y==n,表示已经遍历完一个数组,直接返回0。然后就是状态转移方程了,如果a[x] > b[y],则可以尝试选b[y],递归调用dfs(x, y+1)计算以后的最大价值。否则,只能继续遍历数组a,递归调用dfs(x+1, y)计算最大价值。最后,返回dp[0][0]的值即可。 递推的代码如下: ```c++ #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int MAXN = 1005; int dp[MAXN][MAXN], a[MAXN], b[MAXN], n; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); for (int i = 0; i < n; i++) scanf("%d", &b[i]); for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { dp[i][j] = max(dp[i + 1][j], dp[i + 1][j + 1]); if (a[i] > b[j]) { dp[i][j] = max(dp[i][j], dp[i][j + 1] + b[j]); } } } printf("%d\n", dp[0][0]); return 0; } ``` 其中,dp[i][j]表示选到a数组中第i个元素和b数组中第j个元素时的最大价值。从后往前遍历数组a和数组b,依次计算dp[i][j]的值。状态转移方程和记忆化搜索的方法是一样的。 【参考链接】 P2375 [NOI2014] 动物园:https://www.luogu.com.cn/problem/P2375
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值