pixelshufflle实现超分辨率重建

本文介绍了在超分辨率重建中应用PixelShuffle算法的思路和过程,包括将图像转换为张量、增加通道维度以及使用PixelShuffle进行上采样。博主在实践中遇到了PIL版本问题和张量操作的挑战,如unsqueeze()和squeeze()的使用,并提供了相关参考资料链接以供深入学习。
摘要由CSDN通过智能技术生成

pixelshuffle定义:前人栽树:https://www.pianshen.com/article/33311325633/
算法思路:图像转张量(NxCxWxH)–增加C的维度–调用pixelshuffle
博主最近在做图像超分辨率重建,复现了SRCNN,RDN一些卷积之后concat再进行上采样的算法,今天做了一下简单的pixelshuffle。

import torch
from torch import nn
import cv2
import numpy as np
from torchvision import transforms

img1 = cv2.imread('./107.png',cv2.IMREAD_COLOR)

img1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值