贪心算法与二分搜索

描述

n n n个物品,其重量和价值分别为 w i w_i wi v i v_i vi,从中挑选 k k k个物品,使得单位重量的价值最大化。

例子

输入:
n = 3 n = 3 n=3
k = 2 k = 2 k=2
w = [ 2 , 5 , 2 ] w = [2, 5, 2] w=[2,5,2]
v = [ 2 , 3 , 1 ] v = [2, 3, 1] v=[2,3,1]
输出:
0.75 0.75 0.75
选0号和2号物品。

分析

一般最先想到的方法就是将所有物品按照单位重量的价值进行排序,然后从大到小贪心选取,然而遗憾的是这样贪心策略是错误的。因为这种策略下例子的输出为 ( 2 + 3 ) / ( 2 + 5 ) = 0.714 (2+3)/(2+5)=0.714 (2+3)/(2+5)=0.714贪心策略的证明很重要)。
实际上,该问题使用二分查找可以很好的解决。我们定义:
条 件 C ( x ) : = 可 以 使 得 单 位 重 量 的 价 值 不 小 于 x 条件C(x):=可以使得单位重量的价值不小于x C(x):=使x
因此该问题演变成了求满足条件 C ( x ) C(x) C(x)的最大 x x x。那么如何判断条件是否满足呢?我们假定选择的物品集合为 S S S,则,
他们的单位价值为:
∑ i ∈ S v i / ∑ i ∈ S w i \sum_{i \in S}v_i /\sum_{i \in S}w_i iSvi/iSwi
因此判断条件为:
∑ i ∈ S v i / ∑ i ∈ S w i ≥ x \sum_{i \in S}v_i /\sum_{i \in S}w_i \ge x iSvi/iSwix
把不等式变形:
∑ i ∈ S ( v i − x w i ) ≥ 0 \sum_{i \in S}(v_i - xw_i)\ge 0 iS(vixwi)0
因此,正确的贪心策略应该是:对 ( v i − x w i ) (v_i - xw_i) (vixwi)的值进行排序,然后贪心的选取,判断前 k k k个的和是否大于 0 0 0

n = 3
k = 2
w = [2, 5, 2]
v = [2, 3, 1]


def judge(x):
    y = []	## 用于存放v[i] - x * w[i]
    for i in range(n):
        y.append(v[i] - x * w[i])
    y = sorted(y)
    sum_ = 0
    for i in range(k):
        sum_ += y[n - i - 1]
    return sum_ >= 0


def solve():
    lb = 0
    ub = 10 ** 6
    for i in range(100):
        mid = (lb + ub) / 2
        if judge(mid):
            lb = mid
        else:
            ub = mid
    print(round(mid, 2))


solve()

本题的易错点就是贪心策略的选择,且正确的贪心策略是结合了要求的值,具有相当的隐蔽性,容易受到直观的错误贪心策略指引。

附:证明按单位重量价值排序的贪心策略是错误的

横坐标为重量,纵坐标为价值,两个物品的最终单位重量的价值即为两个向量相加后的斜率。
在这里插入图片描述
斜率: O A > A C > A D OA>AC>AD OA>AC>AD
OA表示A物品的斜率,AC为平移后的B物品的斜率,AD为平移后的C物品的斜率。
显然选择物品AB后的最终斜率为AC,选择物品AC后的最终斜率为AD,AD的斜率 > > >AC的斜率,故安装单位重量的价值排序后贪心策略错误。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值