spark shuffle调优

什么情况下会发生shuffle,然后shuffle的原理是什么,然后我们再一一的剖析!
包括我们后面讲troubleShooting的时候还有我们之前JVM是不是都需要知道shuffle的原理!
希望同学们把shuffle原理重视起来啊!

什么样的情况下,会发生shuffle?

在spark中,主要是以下几个算子:groupByKey、reduceByKey、countByKey、join,等等。

什么是shuffle?

groupByKey,要把分布在集群各个节点上的数据中的同一个key,对应的values,都给集中到一块儿,
集中到集群中同一个节点上,更严密一点说,就是集中到一个节点的一个executor的一个task中。

然后呢,集中一个key对应的values之后,才能交给我们来进行处理,<key, Iterable>;
reduceByKey,算子函数去对values集合进行reduce操作,最后变成一个value;countByKey,
需要在一个task中,获取到一个key对应的所有的value,然后进行计数,统计总共有多少个value;
join,RDD<key, value>,RDD<key, value>,只要是两个RDD中,key相同对应的2个value,
都能到一个节点的executor的task中,给我们进行处理。

reduceByKey(+)

问题在于,同一个单词,比如说(hello, 1),可能散落在不同的节点上;对每个单词进行累加计数,
就必须让所有单词都跑到同一个节点的一个task中,给一个task来进行处理。

reduce端
内存缓冲
HashMap
对key的values执行聚合操作

每一个shuffle的前半部分stage的task,每个task都会创建下一个stage的task数量相同的文件,
比如下一个stage会有100个task,那么当前stage每个task都会创建100份文件;会将
同一个key对应的values,一定是写入同一个文件中的;不同节点上的task,也一定会将同一个key
对应的values,写入下一个stage,同一个task对应的文件中。

shuffle的后半部分stage的task,每个task都会从各个节点上的task写的属于自己的那一份文件中,
拉取key, value对;然后task会有一个内存缓冲区,然后会用HashMap,进行key, values的汇聚;
(key ,values);

task会用我们自己定义的聚合函数,比如reduceByKey(+),把所有values进行一对一的累加;
聚合出来最终的值。就完成了shuffle。

shuffle,一定是分为两个stage来完成的。因为这其实是个逆向的过程,不是stage决定shuffle,
是shuffle决定stage。

reduceByKey(+),在某个action触发job的时候,DAGScheduler,会负责划分job为多个stage。
划分的依据,就是,如果发现有会触发shuffle操作的算子,比如reduceByKey,就将这个操作的前半部分,
以及之前所有的RDD和transformation操作,划分为一个stage;shuffle操作的后半部分,以及后面的,
直到action为止的RDD和transformation操作,划分为另外一个stage。

shuffle前半部分的task在写入数据到磁盘文件之前,都会先写入一个一个的内存缓冲,
内存缓冲满溢之后,再spill溢写到磁盘文件中。

合并map端输出文件,这个是非常有用的!!!

如果不合并map端输出文件的话,会怎么样?

前置条件:
每个executor有2个cpu core。4个task。
task是线程执行的。
所以先并行跑2个task,再跑剩下2个task。

下一个stage,总共只有2个task。所以上一个stage就要每个task准备两个文件!
第一个stage,每个task,都会给第二个stage的每个task创建一份map端的输出文件
第二个stage,每个task,会到各个节点上面去,拉取第一个stage每个task输出的,
属于自己的那一份文件。

问题来了:默认的这种shuffle行为,对性能有什么样的恶劣影响呢?

实际生产环境的条件:
100个节点(每个节点一个executor):100个executor
每个executor:2个cpu core
总共1000个task:每个executor平均10个task

上游1000个task,下游1000个task

每个节点,10个task,每个节点会输出多少份map端文件?10 * 1000=1万个文件

总共有多少份map端输出文件?100 * 10000 = 100万。

shuffle中的写磁盘的操作,基本上就是shuffle中性能消耗最为严重的部分。
通过上面的分析,一个普通的生产环境的spark job的一个shuffle环节,会写入磁盘100万个文件。
磁盘IO对性能和spark作业执行速度的影响,是极其惊人和吓人的。
基本上,spark作业的性能,都消耗在shuffle中了,虽然不只是shuffle的map端输出文件这一个部分,
但是这里也是非常大的一个性能消耗点。

new SparkConf().set(“spark.shuffle.consolidateFiles”, “true”)
开启shuffle map端输出文件合并的机制;默认情况下,是不开启的,
就是会发生如上所述的大量map端输出文件的操作,严重影响性能。

开启了map端输出文件的合并机制之后:

第一个stage,同时就运行cpu core个task,比如cpu core是2个,并行运行2个task;
每个task都创建下一个stage的task数量个文件;
第一个stage,并行运行的2个task执行完以后;就会执行另外两个task;
另外2个task不会再重新创建输出文件;而是复用之前的task创建的map端输出文件,
将数据写入上一批task的输出文件中。
第二个stage,task在拉取数据的时候,就不会去拉取上一个stage每一个task为自己创建的那份输出文件了;
而是拉取少量的输出文件,每个输出文件中,可能包含了多个task给自己的map端输出。

提醒一下(map端输出文件合并):

只有并行执行的task会去创建新的输出文件;下一批并行执行的task,就会去复用之前已有的输出文件;
但是有一个例外,比如2个task并行在执行,但是此时又启动要执行2个task;那么这个时候的话,
就无法去复用刚才的2个task创建的输出文件了;而是还是只能去创建新的输出文件。

要实现输出文件的合并的效果,必须是一批task先执行,然后下一批task再执行,
才能复用之前的输出文件;负责多批task同时起来执行,还是做不到复用的。

开启了map端输出文件合并机制之后,生产环境上的例子,会有什么样的变化?

实际生产环境的条件:
100个节点(每个节点一个executor):100个executor
每个executor:2个cpu core
总共1000个task:每个executor平均10个task

每个节点,2个cpu core,有多少份输出文件呢?2 * 1000 = 2000个
总共100个节点,总共创建多少份输出文件呢?100 * 2000 = 20万个文件

相比较开启合并机制之前的情况,100万个

map端输出文件,在生产环境中,立减5倍!

合并map端输出文件,对咱们的spark的性能有哪些方面的影响呢?

1、map task写入磁盘文件的IO,减少:100万文件 -> 20万文件
2、第二个stage,原本要拉取第一个stage的task数量份文件,1000个task,第二个stage的每个task,
都要拉取1000份文件,走网络传输;合并以后,100个节点,每个节点2个cpu core,
第二个stage的每个task,主要拉取100 * 2 = 200个文件即可;网络传输的性能消耗是不是也大大减少

分享一下,实际在生产环境中,使用了spark.shuffle.consolidateFiles机制以后,
实际的性能调优的效果:对于上述的这种生产环境的配置,性能的提升,还是相当的客观的。
spark作业,5个小时 -> 2~3个小时。

大家不要小看这个map端输出文件合并机制。实际上,在数据量比较大,你自己本身做了前面的性能调优,
executor上去->cpu core上去->并行度(task数量)上去,shuffle没调优,shuffle就很糟糕了;
大量的map端输出文件的产生。对性能有比较恶劣的影响。

这个时候,去开启这个机制,可以很有效的提升性能。

1,如果自定义了分区函数partitioner,就按你的分区函数来
2,如果没有定义,但设置了spark.default.parallelism的话,就使用hash分区的方式,并且使用
这个值作为reduce的个数
3,如果这个也没有设定,就按照输入数据的分片数量来设定,如果是hadoop输入的话,那可就多了!

1,在第一个MapPartitionsRDD这里先做一次fmap端聚合操作
2,ShuffleRDD主要是做抓取数据的工作
3,后面的MapParitionsRDD把抓取过来的数据再次进行聚合操作!

spark.shuffle.manager hash M*R 个小文件
spark.shuffle.manager sort
默认

  • 12
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值