Chapter 6 (Orthogonality and Least Squares): The Gram–Schmidt process (格拉姆-施密特算法), QR Factorization

本文为《Linear algebra and its applications》的读书笔记

The Gram–Schmidt process

  • The Gram–Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of R n \mathbb R^n Rn.

EXAMPLE 1

Let W = S p a n { x 1 , x 2 } W = Span\{\boldsymbol x_1, \boldsymbol x_2\} W=Span{x1,x2}, where x 1 = [ 3 6 0 ] \boldsymbol x_1 =\begin{bmatrix}3\\6\\0\end{bmatrix} x1=360 and x 2 = [ 1 2 3 ] \boldsymbol x_2 =\begin{bmatrix}1\\2\\3\end{bmatrix} x2=123. Construct an orthogonal basis { v 1 , v 2 } \{\boldsymbol v_1, \boldsymbol v_2\} {v1,v2} for W W W.

SOLUTION
在这里插入图片描述

  • The component of x 2 \boldsymbol x_2 x2 orthogonal to x 1 \boldsymbol x_1 x1 is x 2 − p \boldsymbol x_2 -\boldsymbol p x2p, which is in W W W. Let v 1 = x 1 \boldsymbol v_1 =\boldsymbol x_1 v1=x1 and
    在这里插入图片描述

  • The next example fully illustrates the Gram–Schmidt process. Study it carefully.

EXAMPLE 2

Let x 1 = [ 1 1 1 1 ] \boldsymbol x_1 =\begin{bmatrix}1\\1\\1\\1\end{bmatrix} x1=1111, x 2 = [ 0 1 1 1 ] \boldsymbol x_2 =\begin{bmatrix}0\\1\\1\\1\end{bmatrix} x2=0111, and x 3 = [ 0 0 1 1 ] \boldsymbol x_3 =\begin{bmatrix}0\\0\\1\\1\end{bmatrix} x3=0011. Then { x 1 , x 2 , x 3 } \{\boldsymbol x_1, \boldsymbol x_2,\boldsymbol x_3\} {x1,x2,x3} is linearly independent and thus is a basis for a subspace W W W of R 4 \mathbb R^4 R4. Construct an orthogonal basis for W W W.

SOLUTION

  • S t e p 1. Step 1. Step1. Let v 1 = x 1 \boldsymbol v_1 =\boldsymbol x_1 v1=x1 and W 1 = S p a n { x 1 } = S p a n { v 1 } W_1 = Span\{\boldsymbol x_1\}= Span\{\boldsymbol v_1\} W1=Span{x1}=Span{v1}.
  • S t e p 2. Step 2. Step2. Let v 2 \boldsymbol v_2 v2 be the vector produced by subtracting from x 2 \boldsymbol x_2 x2 its projection onto the subspace W 1 W_1 W1. That is, let
    在这里插入图片描述Then { v 1 , v 2 } \{\boldsymbol v_1,\boldsymbol v_2\} {v1,v2} is an orthogonal basis for the subspace W 2 W_2 W2 spanned by x 1 \boldsymbol x_1 x1 and x 2 \boldsymbol x_2 x2.
  • S t e p 2 ′ ( o p t i o n a l ) . Step 2' (optional). Step2(optional). If appropriate, scale v 2 \boldsymbol v_2 v2 to simplify later computations:
    在这里插入图片描述
  • S t e p 3. Step 3. Step3. Let v 3 \boldsymbol v_3 v3 be the vector produced by subtracting from x 3 \boldsymbol x_3 x3 its projection onto the subspace W 2 W_2 W2. Use the orthogonal basis { v 1 , v 2 ′ } \{\boldsymbol v_1,\boldsymbol v_2'\} {v1,v2} to compute this projection onto W 2 W_2 W2:
    在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • The proof of the next theorem shows that this strategy really works. Scaling of vectors is not mentioned because that is used only to simplify hand calculations.

在这里插入图片描述

  • Theorem 11 shows that any nonzero subspace W W W of R n \mathbb R^n Rn has an orthogonal basis.

PROOF

  • For 1 ≤ k ≤ p 1 \leq k \leq p 1kp, let W k = S p a n { x 1 , . . . , x k } W_k = Span \{\boldsymbol x_1,..., \boldsymbol x_k\} Wk=Span{x1,...,xk}.
  • Set v 1 = x 1 \boldsymbol v_1 =\boldsymbol x_1 v1=x1, so that S p a n { v 1 } = S p a n { x 1 } Span \{v_1\}= Span \{x_1\} Span{v1}=Span{x1}.
  • Suppose, for some k < p k < p k<p, we have constructed v 1 , . . . , v k \boldsymbol v_1,...,\boldsymbol v_k v1,...,vk so that { v 1 , . . . , v k } \{\boldsymbol v_1,..., \boldsymbol v_k\} {v1,...,vk} an orthogonal basis for W k W_k Wk. Define
    v k + 1 = x k + 1 − p r o j W k x k + 1       ( 2 ) \boldsymbol v_{k+1} = \boldsymbol x_{k+1}- proj_{W_k}\boldsymbol x_{k+1}\ \ \ \ \ (2) vk+1=xk+1projWkxk+1     (2)By the Orthogonal Decomposition Theorem, v k + 1 \boldsymbol v_{k+1} vk+1 is orthogonal to W k W_k Wk.
    • Note that p r o j W k x k + 1 proj_{W_k}\boldsymbol x_{k+1} projWkxk+1 is in W k W_k Wk and hence also in W k + 1 W_{k+1} Wk+1. Since x k + 1 \boldsymbol x_{k+1} xk+1 is in W k + 1 W_{k+1} Wk+1, so is v k + 1 \boldsymbol v_{k+1} vk+1.
    • Furthermore, v k + 1 ≠ 0 \boldsymbol v_{k+1} \neq \boldsymbol 0 vk+1=0 because x k + 1 \boldsymbol x_{k+1} xk+1 is not in W k W_k Wk.
  • Hence { v 1 , . . . , v k + 1 } \{\boldsymbol v_1,..., \boldsymbol v_{k+1}\} {v1,...,vk+1} is an orthogonal set of nonzero vectors in W k + 1 W_{k+1} Wk+1. This set is an orthogonal basis for W k + 1 W_{k+1} Wk+1. Hence W k + 1 = S p a n { v 1 , . . . , v k + 1 } W_{k+1}= Span \{\boldsymbol v_1,..., \boldsymbol v_{k+1}\} Wk+1=Span{v1,...,vk+1}. When k + 1 = p k + 1 = p k+1=p, the process stops.

Orthonormal Bases

  • An orthonormal basis is constructed easily from an orthogonal basis { v 1 , . . . , v p } \{\boldsymbol v_1,..., \boldsymbol v_p\} {v1,...,vp}: simply normalize (i.e., “scale”) all the v k \boldsymbol v_k vk.

Tip: When working problems by hand, this is easier than normalizing each v k \boldsymbol v_k vk as soon as it is found (because it avoids unnecessary writing of square roots).

QR Factorization of Matrices

  • If an m × n m \times n m×n matrix A A A has linearly independent columns { x 1 , . . . , x n } \{\boldsymbol x_1,..., \boldsymbol x_{n}\} {x1,...,xn}, then applying the Gram–Schmidt process (with normalizations) to { x 1 , . . . , x n } \{\boldsymbol x_1,..., \boldsymbol x_{n}\} {x1,...,xn} amounts to f a c t o r i n g factoring factoring A A A.
    • This factorization is widely used in computer algorithms for various computations, such as solving equations (discussed in Section 6.5) and finding eigenvalues (mentioned in the exercises for Section 5.2).

在这里插入图片描述
PROOF

  • The columns of A A A form a basis { x 1 , . . . , x n } \{\boldsymbol x_1,..., \boldsymbol x_{n}\} {x1,...,xn} for C o l A ColA ColA. Construct an orthonormal basis { u 1 , . . . , u n } \{\boldsymbol u_1,..., \boldsymbol u_{n}\} {u1,...,un} for W = C o l A W = ColA W=ColA. This basis may be constructed by the Gram–Schmidt process or some other means. Let
    在这里插入图片描述For k = 1 , . . . , n k = 1,..., n k=1,...,n, x k \boldsymbol x_k xk is in S p a n { x 1 , . . . , x k } = S p a n { u 1 , . . . , u k } Span \{\boldsymbol x_1,...,\boldsymbol x_k\}= Span\{\boldsymbol u_1,...,\boldsymbol u_k\} Span{x1,...,xk}=Span{u1,...,uk}. So there are constants, r 1 k , . . . , r k k r_{1k},..., r_{kk} r1k,...,rkk, such that
    在这里插入图片描述We may assume that r k k ≥ 0 r_{kk}\geq0 rkk0. (If r k k < 0 r_{kk} < 0 rkk<0, multiply both r k k r_{kk} rkk and u k \boldsymbol u_k uk by − 1 -1 1.) This shows that x k \boldsymbol x_k xk is a linear combination of the columns of Q Q Q using as weights the entries in the vector
    在这里插入图片描述That is, x k = Q r k \boldsymbol x_k= Q\boldsymbol r_k xk=Qrk for k = 1 , . . . , n k= 1,..., n k=1,...,n. Let R = [ r 1    . . .    r n ] R =[\boldsymbol r_1\ \ ...\ \ \boldsymbol r_n] R=[r1  ...  rn]. Then
    在这里插入图片描述
  • The fact that R R R is invertible follows easily from the fact that the columns of A A A are linearly independent. Since R R R is clearly upper triangular, its nonnegative diagonal entries must be positive.

EXERCISES

Suppose A = Q R A = QR A=QR, where Q Q Q is m × n m \times n m×n and R R R is n × n n \times n n×n. Show that if the columns of A A A are linearly independent, then R R R must be invertible.

SOLUTION

  • [Hint: Study the equation R x = 0 R\boldsymbol x = \boldsymbol 0 Rx=0 and use the fact that A = Q R A = QR A=QR.]

  • Q Q Q can be constructed by Gram–Schmidt process and R R R can be calculated by R = Q T A R=Q^TA R=QTA

在这里插入图片描述

1 ^1 1 See F u n d a m e n t a l s Fundamentals Fundamentals o f of of M a t r i x Matrix Matrix C o m p u t a t i o n s Computations Computations, by D a v i d David David S . S. S. W a t k i n s Watkins Watkins (New York: John Wiley & Sons, 1991), pp. 167–180.


EXERCISES 23

Suppose A = Q R A = QR A=QR is a Q R QR QR factorization of an m × n m \times n m×n matrix A A A (with linearly independent columns). Partition A A A as [ A 1    A 2 ] [A_1\ \ A_2] [A1  A2], where A 1 A_1 A1 has p p p columns. Show how to obtain a QR factorization of A 1 A_1 A1 .

SOLUTION
∵ A = Q R ∴ [ A 1 m × p A 2 m × ( n − p ) ] = [ Q 1 m × p Q 2 m × ( n − p ) ] [ R 1 1 p × p R 1 2 p × ( n − p ) 0 ( n − p ) × p R 2 2 ( n − p ) × ( n − p ) ] ∴ A 1 m × p = Q 1 m × p R 1 1 p × p \because A=QR \\\therefore \begin{bmatrix}A_{1_{m\times p}}& A_{2_{m\times (n-p)}}\end{bmatrix}=\begin{bmatrix}Q_{1_{m\times p}}& Q_{2_{m\times (n-p)}}\end{bmatrix}\begin{bmatrix}R_{11_{p\times p}}& R_{12_{p\times (n-p)}}\\ 0_{(n-p)\times p}& R_{22_{(n-p)\times (n-p)}} \end{bmatrix}\\\therefore A_{1_{m\times p}}=Q_{1_{m\times p}}R_{11_{p\times p}} A=QR[A1m×pA2m×(np)]=[Q1m×pQ2m×(np)][R11p×p0(np)×pR12p×(np)R22(np)×(np)]A1m×p=Q1m×pR11p×p

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
语音W-Disjoint Orthogonality(WDO)是一种短时正交特性,它在语音处理中具有重要作用。短时正交特性是指在短时间内,不同的语音信号之间具有正交性,即彼此之间相互独立且互不干扰。 语音信号通常由一系列短时帧组成,每个帧的持续时间通常在10至30毫秒之间。在WDO中,不同的语音信号通过应用窗函数来加以分析和处理,通常使用的窗函数是矩形窗和汉宁窗。这些窗函数的作用是在时间域上将信号切割成较小的窗口以进行进一步的分析。 在窗函数应用后,信号会在频域上转换为复数值的频谱表示,同时每个频率分量也会变为相位和振幅。WDO利用这些频域的相位信息来判断不同的语音信号之间是否正交。如果两个语音信号之间的频域相位信息相互独立,则它们在时间上是正交的。 WDO的短时正交特性在语音信号识别、语音合成和语音增强等领域非常有用。通过分析和利用不同语音信号之间的正交性,可以准确地分离和识别不同的语音成分,从而提高语音信号的质量和可识别性。同时,WDO还可以用于去除背景噪声和改善语音信号的清晰度。 总之,语音W-Disjoint Orthogonality(WDO)是一种基于短时正交特性的语音处理方法。它通过分析语音信号的频域相位信息,判断不同语音信号之间的正交性,从而提高语音信号的质量和可识别性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值