Chapter 5 (Eigenvalues and Eigenvectors): The characteristic equation (特征方程)

本文为《Linear algebra and its applications》的读书笔记

The Characteristic Equation

  • Note that λ \lambda λ is the eigenvalue of A A A if and only if A − λ I A-\lambda I AλI is not invertible, which is equivalent to d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0. The scalar equation d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0 is called the characteristic equation of A A A.

在这里插入图片描述


  • It can be shown that if A A A is an n × n n \times n n×n matrix, then d e t ( A − λ I ) det(A -\lambda I) det(AλI) is a polynomial of degree n n n called the characteristic polynomial (特征多项式) of A A A.
    • Suppose that d e t ( A − λ I ) = ( λ − 5 ) 2 ( λ − 3 ) ( λ − 1 ) det(A -\lambda I)=(\lambda-5)^2(\lambda-3)(\lambda-1) det(AλI)=(λ5)2(λ3)(λ1), then the eigenvalue 5 is said to have m u l t i p l i c i t y multiplicity multiplicity (重数) 2 because ( λ − 5 ) (\lambda-5) (λ5) occurs two times as a factor of the characteristic polynomial. In general, the (algebraic) multiplicity (重数) of an eigenvalue λ \lambda λ is its multiplicity as a root of the characteristic equation.
    • Because the characteristic equation for an n × n n \times n n×n matrix involves an n n nth-degree polynomial, the equation has exactly n n n roots, counting multiplicities, provided complex roots are allowed. Such complex roots, called c o m p l e x complex complex e i g e n v a l u e s eigenvalues eigenvalues (复特征值), will be discussed in Section 5.5.

在这里插入图片描述

Similarity

相似性

  • The next theorem illustrates one use of the characteristic polynomial, and it provides the foundation for several iterative methods that approximate eigenvalues.

  • If A A A and B B B are n × n n \times n n×n matrices, then A A A is similar to B B B if there is an invertible matrix P P P such that P − 1 A P = B P^{-1}AP = B P1AP=B, or, equivalently, A = P B P − 1 A = PBP^{-1} A=PBP1. Writing Q Q Q for P − 1 P^{-1} P1, we have Q − 1 B Q = A Q^{-1}BQ = A Q1BQ=A. So B B B is also similar to A A A, and we say simply that A A A and B B B are similar. Changing A A A into P − 1 A P P^{-1}AP P1AP is called a similarity transformation.

“similar to” is an equivalence relation (等价关系)

推论: 相似 ⇔ \Leftrightarrow 特征方程相同

在这里插入图片描述

Proof
det ( B − λ I ) = det ( P − 1 A P − λ I ) = det ( P − 1 ( A − λ I ) P ) = det P − 1 det ( A − λ I ) det P = det ( A − λ I ) \text{det}(B-\lambda I)=\text{det}(P^{-1}AP-\lambda I)=\text{det}(P^{-1}(A-\lambda I)P) \\=\text{det}P^{-1}\text{det}(A-\lambda I)\text{det}P=\text{det}(A-\lambda I) det(BλI)=det(P1APλI)=det(P1(AλI)P)=detP1det(AλI)detP=det(AλI)

推论: 相似 ⇔ \Leftrightarrow 秩相同

  • If A A A and B B B are similar, then they have the same rank.

Proof

  • [Hint: Refer to 4.6 Exercises 12 and 13]

Application to Dynamical Systems

动力系统

  • Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical system.

EXAMPLE 5

Let A = [ . 95 . 03 . 05 . 97 ] A =\begin{bmatrix} .95 &.03\\.05 &.97\end{bmatrix} A=[.95.05.03.97]. Analyze the long-term behavior of the dynamical system defined by x k + 1 = A x k ( k = 0 , 1 , 2... ) \boldsymbol x_{k+1} = A\boldsymbol x_k(k = 0, 1, 2...) xk+1=Axk(k=0,1,2...), with x 0 = [ . 6 . 4 ] \boldsymbol x_0 =\begin{bmatrix} .6\\.4\end{bmatrix} x0=[.6.4].

SOLUTION

  • The first step is to find the eigenvalues of A A A and a basis for each eigenspace.
    在这里插入图片描述It is readily checked that eigenvectors corresponding to λ = 1 \lambda = 1 λ=1 and λ = . 92 \lambda =.92 λ=.92 are multiples of
    在这里插入图片描述respectively.
  • The next step is to write the given x 0 \boldsymbol x_0 x0 in terms of v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2. This can be done because { v 1 , v 2 } \{\boldsymbol v_1,\boldsymbol v_2\} {v1,v2} is obviously a basis for R 2 \mathbb R^2 R2.
    在这里插入图片描述Because v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2 in (3) are eigenvectors of A A A, we easily compute x k \boldsymbol x_k xk:
    在这里插入图片描述As k → ∞ , ( . 92 ) k k \rightarrow \infty,(.92)^k k,(.92)k tends to zero and x k \boldsymbol x_k xk tends to [ . 375 . 625 ] = . 125 v 1 \begin{bmatrix} .375 \\.625 \end{bmatrix}=.125\boldsymbol v_1 [.375.625]=.125v1.

QR algorithm

  • A widely used method for estimating eigenvalues of a general matrix A A A is the Q R   a l g o r i t h m QR\ algorithm QR algorithm. Under suitable conditions, this algorithm produces a sequence of matrices, all similar to A A A, that become almost upper triangular, with diagonal entries that approach the eigenvalues of A A A.
  • The main idea is to factor A A A (or another matrix similar to A A A) in the form A = Q 1 R 1 A = Q_1R_1 A=Q1R1, where Q 1 T = Q 1 − 1 Q_1^T= Q_1^{-1} Q1T=Q11 and R 1 R_1 R1 is upper triangular. The factors are interchanged to form A 1 = R 1 Q 1 A_1 = R_1Q_1 A1=R1Q1, which is again factored as A 1 = Q 2 R 2 A_1 = Q_2R_2 A1=Q2R2; then to form A 2 = R 2 Q 2 A_2 = R_2Q_2 A2=R2Q2, and so on. The similarity of A , A 1 , A 2 , . . . A,A_1,A_2,... A,A1,A2,... can be easily shown.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值