本文为《Linear algebra and its applications》的读书笔记
目录
The Characteristic Equation
- Note that λ \lambda λ is the eigenvalue of A A A if and only if A − λ I A-\lambda I A−λI is not invertible, which is equivalent to d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(A−λI)=0. The scalar equation d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(A−λI)=0 is called the characteristic equation of A A A.
- It can be shown that if
A
A
A is an
n
×
n
n \times n
n×n matrix, then
d
e
t
(
A
−
λ
I
)
det(A -\lambda I)
det(A−λI) is a polynomial of degree
n
n
n called the characteristic polynomial (特征多项式) of
A
A
A.
- Suppose that d e t ( A − λ I ) = ( λ − 5 ) 2 ( λ − 3 ) ( λ − 1 ) det(A -\lambda I)=(\lambda-5)^2(\lambda-3)(\lambda-1) det(A−λI)=(λ−5)2(λ−3)(λ−1), then the eigenvalue 5 is said to have m u l t i p l i c i t y multiplicity multiplicity (重数) 2 because ( λ − 5 ) (\lambda-5) (λ−5) occurs two times as a factor of the characteristic polynomial. In general, the (algebraic) multiplicity (重数) of an eigenvalue λ \lambda λ is its multiplicity as a root of the characteristic equation.
- Because the characteristic equation for an n × n n \times n n×n matrix involves an n n nth-degree polynomial, the equation has exactly n n n roots, counting multiplicities, provided complex roots are allowed. Such complex roots, called c o m p l e x complex complex e i g e n v a l u e s eigenvalues eigenvalues (复特征值), will be discussed in Section 5.5.
Similarity
相似性
- The next theorem illustrates one use of the characteristic polynomial, and it provides the foundation for several iterative methods that approximate eigenvalues.
- If A A A and B B B are n × n n \times n n×n matrices, then A A A is similar to B B B if there is an invertible matrix P P P such that P − 1 A P = B P^{-1}AP = B P−1AP=B, or, equivalently, A = P B P − 1 A = PBP^{-1} A=PBP−1. Writing Q Q Q for P − 1 P^{-1} P−1, we have Q − 1 B Q = A Q^{-1}BQ = A Q−1BQ=A. So B B B is also similar to A A A, and we say simply that A A A and B B B are similar. Changing A A A into P − 1 A P P^{-1}AP P−1AP is called a similarity transformation.
“similar to” is an equivalence relation (等价关系)
推论: 相似 ⇔ \Leftrightarrow ⇔ 特征方程相同
Proof
det
(
B
−
λ
I
)
=
det
(
P
−
1
A
P
−
λ
I
)
=
det
(
P
−
1
(
A
−
λ
I
)
P
)
=
det
P
−
1
det
(
A
−
λ
I
)
det
P
=
det
(
A
−
λ
I
)
\text{det}(B-\lambda I)=\text{det}(P^{-1}AP-\lambda I)=\text{det}(P^{-1}(A-\lambda I)P) \\=\text{det}P^{-1}\text{det}(A-\lambda I)\text{det}P=\text{det}(A-\lambda I)
det(B−λI)=det(P−1AP−λI)=det(P−1(A−λI)P)=detP−1det(A−λI)detP=det(A−λI)
推论: 相似 ⇔ \Leftrightarrow ⇔ 秩相同
- If A A A and B B B are similar, then they have the same rank.
Proof
- [Hint: Refer to 4.6 Exercises 12 and 13]
Application to Dynamical Systems
动力系统
- Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical system.
EXAMPLE 5
Let A = [ . 95 . 03 . 05 . 97 ] A =\begin{bmatrix} .95 &.03\\.05 &.97\end{bmatrix} A=[.95.05.03.97]. Analyze the long-term behavior of the dynamical system defined by x k + 1 = A x k ( k = 0 , 1 , 2... ) \boldsymbol x_{k+1} = A\boldsymbol x_k(k = 0, 1, 2...) xk+1=Axk(k=0,1,2...), with x 0 = [ . 6 . 4 ] \boldsymbol x_0 =\begin{bmatrix} .6\\.4\end{bmatrix} x0=[.6.4].
SOLUTION
- The first step is to find the eigenvalues of
A
A
A and a basis for each eigenspace.
It is readily checked that eigenvectors corresponding to λ = 1 \lambda = 1 λ=1 and λ = . 92 \lambda =.92 λ=.92 are multiples of
respectively.
- The next step is to write the given
x
0
\boldsymbol x_0
x0 in terms of
v
1
\boldsymbol v_1
v1 and
v
2
\boldsymbol v_2
v2. This can be done because
{
v
1
,
v
2
}
\{\boldsymbol v_1,\boldsymbol v_2\}
{v1,v2} is obviously a basis for
R
2
\mathbb R^2
R2.
Because v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2 in (3) are eigenvectors of A A A, we easily compute x k \boldsymbol x_k xk:
As k → ∞ , ( . 92 ) k k \rightarrow \infty,(.92)^k k→∞,(.92)k tends to zero and x k \boldsymbol x_k xk tends to [ . 375 . 625 ] = . 125 v 1 \begin{bmatrix} .375 \\.625 \end{bmatrix}=.125\boldsymbol v_1 [.375.625]=.125v1.
QR algorithm
- A widely used method for estimating eigenvalues of a general matrix A A A is the Q R a l g o r i t h m QR\ algorithm QR algorithm. Under suitable conditions, this algorithm produces a sequence of matrices, all similar to A A A, that become almost upper triangular, with diagonal entries that approach the eigenvalues of A A A.
- The main idea is to factor A A A (or another matrix similar to A A A) in the form A = Q 1 R 1 A = Q_1R_1 A=Q1R1, where Q 1 T = Q 1 − 1 Q_1^T= Q_1^{-1} Q1T=Q1−1 and R 1 R_1 R1 is upper triangular. The factors are interchanged to form A 1 = R 1 Q 1 A_1 = R_1Q_1 A1=R1Q1, which is again factored as A 1 = Q 2 R 2 A_1 = Q_2R_2 A1=Q2R2; then to form A 2 = R 2 Q 2 A_2 = R_2Q_2 A2=R2Q2, and so on. The similarity of A , A 1 , A 2 , . . . A,A_1,A_2,... A,A1,A2,... can be easily shown.