微积分:函数、图像和直线

本文为《普林斯顿微积分读本》的读书笔记

函数

  • 函数是将一个对象转化为另一个对象的规则. 起始对象称为输入, 来自称为定义域 D ( f ) D(f) D(f)的集合. 返回对象称为输出, 来自称为上域的集合
    • 值域 R ( f ) R(f) R(f):所有可能的输出所组成的集合. 值域实际上是上域的一个子集. 上域是可能输出的集合, 而值域则是实际输出的集合.
    • 一个函数必须给每一个有效的输入指定唯一的输出 (单值性)
      • 垂线检验:如果一个坐标轴中的图像与任一垂线 (垂直于 x x x 轴) 都只交于一点,则它是一个函数的图像

在之后的部分, 函数总有上域 R \R R, 并且其定义域总会尽可能和 R \R R 差不多

有时在数集的字母的右上角标上 * 来表示该数集内排除 0;标上 + 表示该数集内排除 0 与负数;例如, N + N^+ N+ (全体正整数的集合)


  • 函数的复合: f = h ( g ( x ) ) = h ∘ g f=h(g(x))=h\circ g f=h(g(x))=hg
    • g ( x ) = x − a g(x)=x-a g(x)=xa, 则 h ( x ) = ( f ∘ g ) ( x ) = f ( x − a ) h(x)=(f\circ g)(x)=f(x-a) h(x)=(fg)(x)=f(xa) 相当于将 f f f 的图像右移 a a a 个单位

  • 奇函数: ∀ x ∈ D , f ( − x ) = − f ( x ) \forall x\in D, f(-x)=-f(x) xD,f(x)=f(x) ( D D D 为函数定义域)
    • 奇函数的图像关于原点有 180 ° 180\degree 180° 的点对称性.
  • 偶函数: ∀ x ∈ D , f ( − x ) = f ( x ) \forall x\in D, f(-x)=f(x) xD,f(x)=f(x)
    • 偶函数的图像关于 y y y 轴具有镜面对称性.

区间表示法

  • [ a , b ] , ( a , b ) , ( a , b ] [a,b],(a,b),(a,b] [a,b],(a,b),(a,b]
  • [ a , ∞ ) [a,\infty) [a,)
  • ( a , b ] (a,b] (a,b] \ { c } \{c\} {c} : 反斜杠表示 “不包括”

反函数

f − 1 f^{-1} f1 定义的条件:

  • f f f双射时可以定义反函数 f − 1 f^{-1} f1
    • 水平线检验:如果每一条水平线和一个函数的图像相交至多一次, 那么这个函数就有一个反函数.
  • 如果 f f f 在原定义域上没有反函数,则可以限制函数的定义域以定义反函数;例如下图中如果限制定义域为 [ 0 , + ∞ ) [0,+\infty) [0,+),则 g ( x ) g(x) g(x) 可以定义反函数
    在这里插入图片描述

f − 1 f^{-1} f1 的定义:

  • f − 1 f^{-1} f1 的定义域和 f f f 的值域相同
  • f − 1 f^{-1} f1 的值域和 f f f 的定义域相同
  • f − 1 ( y ) f^{-1}(y) f1(y) 的值就是满足 f ( x ) = y f(x) = y f(x)=y x x x. 所以, 如果 f ( x ) = y f (x) = y f(x)=y, 那么 f − 1 ( y ) = x f^{-1}(y) = x f1(y)=x.
    • 因此, f − 1 ( x ) f^{-1}(x) f1(x) 的图像与 f ( x ) f(x) f(x) 的图像关于 y = x y=x y=x 对称

f − 1 f^{-1} f1 的一些性质:

  • f − 1 ( f ( x ) ) = x , f ( f − 1 ( y ) ) = y f^{-1}(f (x)) = x,f(f^{-1}(y))=y f1(f(x))=x,f(f1(y))=y
  • 不过,在限制定义域的情况下, f ( f − 1 ( y ) ) = y f(f^{-1}(y))=y f(f1(y))=y f − 1 ( f ( x ) ) f^{-1}(f (x)) f1(f(x)) 可能不等于 x x x
    • 例如上例的 g ( x ) g(x) g(x) 中, g − 1 ( g ( − 2 ) ) = 2 ≠ − 2 g^{-1}(g(-2))=2\neq-2 g1(g(2))=2=2,原因是 − 2 -2 2 并不在 g ( x ) g(x) g(x) 的限制定义域上

线性函数

  • 线性函数:形如 f ( x ) = m x + b f(x) = mx + b f(x)=mx+b 的函数
    • m m m 为斜率, b b b y y y 轴的截距
  • 直线方程的点斜式
    y − y 0 = m ( x − x 0 ) y-y_0 = m(x-x_0) yy0=m(xx0)

三角学回顾

基本知识

  • 弧度 2 π = 360 ° 2\pi=360\degree 2π=360°
    • 半径为 1 个单位的圆的一个扇形的弧长就是这个扇形的圆心角的弧度
      在这里插入图片描述
  • s i n ( θ ) = y r , c o s ( θ ) = x r , t a n ( θ ) = y x sin(\theta)=\frac{y}{r},cos(\theta)=\frac{x}{r},tan(\theta)=\frac{y}{x} sin(θ)=ry,cos(θ)=rx,tan(θ)=xy
    • 为方便起见, 我们常常假设 r = 1 r = 1 r=1, 这样得到的点 ( x , y ) (x, y) (x,y) 会落在单位圆上
      在这里插入图片描述
    • 我们把射线 θ \theta θ x x x 轴较小的夹角称为 参考角 ( 0 0 0~ π 2 \frac{\pi}{2} 2π), θ \theta θ 与参考角的 s i n , c o s , t a n sin,cos,tan sin,cos,tan 值只有符号不一样,进而根据下面的 ACTS 图判断符号正负即可
      • 例如 t a n ( 9 π / 13 ) = − t a n ( 4 π / 13 ) tan(9\pi/13)=-tan(4\pi/13) tan(9π/13)=tan(4π/13)
        在这里插入图片描述
  • 余割: c s c ( x ) = 1 s i n ( x ) csc(x)=\frac{1}{sin(x)} csc(x)=sin(x)1
  • 正割: s e c ( x ) = 1 c o s ( x ) sec(x)=\frac{1}{cos(x)} sec(x)=cos(x)1
  • 余切: c o t ( x ) = 1 t a n ( x ) cot(x)=\frac{1}{tan(x)} cot(x)=tan(x)1

三角恒等式

  • t a n ( x ) = s i n ( x ) c o s ( x ) , c o t ( x ) = c o s ( x ) s i n ( x ) tan(x)=\frac{sin(x)}{cos(x)},cot(x)=\frac{cos(x)}{sin(x)} tan(x)=cos(x)sin(x),cot(x)=sin(x)cos(x)
  • c o s 2 ( x ) + s i n 2 ( x ) = 1 cos^2(x)+sin^2(x)=1 cos2(x)+sin2(x)=1 (毕达哥拉斯定理)
  • 1 + t a n 2 ( x ) = s e c 2 ( x ) 1+tan^2(x)=sec^2(x) 1+tan2(x)=sec2(x) (上式两边同除以 c o s 2 ( x ) cos^2(x) cos2(x))
  • c o t 2 ( x ) + 1 = c s c 2 ( x ) cot^2(x)+1=csc^2(x) cot2(x)+1=csc2(x)
  • s i n ( x ) = c o s ( π 2 − x ) , t a n ( x ) = c o t ( π 2 − x ) , s e c ( x ) = c s c ( π 2 − x ) sin(x)=cos(\frac{\pi}{2}-x),tan(x)=cot(\frac{\pi}{2}-x),sec(x)=csc(\frac{\pi}{2}-x) sin(x)=cos(2πx),tan(x)=cot(2πx),sec(x)=csc(2πx)
  • s i n ( A + B ) = s i n ( A ) c o s ( B ) + c o s ( A ) s i n ( B ) s i n ( A − B ) = s i n ( A ) c o s ( B ) − c o s ( A ) s i n ( B ) sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\\sin(A-B)=sin(A)cos(B)-cos(A)sin(B) sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(AB)=sin(A)cos(B)cos(A)sin(B)
    • s i n ( 2 x ) = 2 s i n ( x ) c o s ( x ) sin(2x)=2sin(x)cos(x) sin(2x)=2sin(x)cos(x)
  • c o s ( A + B ) = c o s ( A ) c o s ( B ) − s i n ( A ) s i n ( B ) c o s ( A − B ) = c o s ( A ) c o s ( B ) + s i n ( A ) s i n ( B ) cos(A+B)=cos(A)cos(B)-sin(A)sin(B)\\cos(A-B)=cos(A)cos(B)+sin(A)sin(B) cos(A+B)=cos(A)cos(B)sin(A)sin(B)cos(AB)=cos(A)cos(B)+sin(A)sin(B)
    • c o s ( 2 x ) = 2 c o s 2 ( x ) − 1 = 1 − 2 s i n 2 ( x ) cos(2x)=2cos^2(x)-1=1-2sin^2(x) cos(2x)=2cos2(x)1=12sin2(x)

常见函数及其图像

多项式

  • 次数为 n n n 的多项式 ( a n ≠ 0 a_n\neq0 an=0):
    p ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 2 x 2 + a 1 x + a 0 p(x) = a_nx^n + a_{n-1}x^{n-1}+... + a_2x^2 + a_1x + a_0 p(x)=anxn+an1xn1+...+a2x2+a1x+a0

在这里插入图片描述

  • 一般的多项式的图像是很难画的. 不过, 多项式的图像左右两端的走势倒是容易判断. 这是由最高次数的项的系数决定的, 该系数叫作首项系数. 实际上, 我们只需考虑首项系数正负以及多项式次数的奇偶就能判断图像两端的走势了.
    在这里插入图片描述

有理函数

  • 有理函数:形如 p ( x ) q ( x ) \frac{p(x)}{q(x)} q(x)p(x), 其中 p p p q q q 为多项式的函数
    在这里插入图片描述

指数函数和对数函数

  • y = b x ( b > 1 ) y=b^x(b>1) y=bx(b>1) (左图), y = b x ( 0 < b < 1 ) y=b^x(0<b<1) y=bx(0<b<1) (右图)
    在这里插入图片描述
  • 对数函数为指数函数的反函数,因此它们关于 y = x y=x y=x 镜像对称
    在这里插入图片描述

三角函数

  • y = s i n ( x ) y=sin(x) y=sin(x)
    在这里插入图片描述
  • y = c o s ( x ) y=cos(x) y=cos(x)
    在这里插入图片描述
  • y = t a n ( x ) y=tan(x) y=tan(x)
    在这里插入图片描述
  • y = s e c ( x ) y=sec(x) y=sec(x)
    在这里插入图片描述
  • y = c s c ( x ) y=csc(x) y=csc(x)
    在这里插入图片描述
  • y = c o t ( x ) y=cot(x) y=cot(x)
    在这里插入图片描述
  • y = a r c t a n ( x ) y=arctan(x) y=arctan(x)
    在这里插入图片描述
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值