[CVPR 2023] HIER: Metric Learning Beyond Class Labels via Hierarchical Regularization

Introduction

  • 有监督度量学习的监督形式一般为 equivalence between human-labeled classes,作者认为这忽略了数据的 latent semantic hierarchy. 为此,作者提出了一种自监督的正则化方法 HIER (HIErarchical Regularization),通过在双曲空间中学习 hierarchical proxies 来捕捉数据隐式的层次信息,从而提供比类别标签更加细粒度的监督信号
  • 并且作为一种正则化方法,HIER 可以和其他基于超球/双曲空间的 SOTA 度量学习方法结合并有效提升其性能 (超球空间上的度量学习损失使得样本 embed 间的角度与样本间相似度一致,而 HIER 可以使得样本 embed 在经过指数变换后,在双曲空间上的距离满足类别层次关系)

在这里插入图片描述

Method

HIER (HIErarchical Regularization)

  • HIER 损失函数基于三元组 { x i , x j , x k } \{x_i,x_j,x_k\} {xi,xj,xk},其中 x j , x j x_j,x_j xj,xj 是相关样本, x k x_k xk 是无关样本,相关的定义是两个样本互为双曲空间上的 K K K ( K = 20 K=20 K=20) 近邻样本 (reciprocal nearest neighbor). 三元组集合 T \mathcal T T 定义为
    在这里插入图片描述
  • hierarchical proxies 为可学习参数,每个 proxy 都代表数据集中若干样本或者其他 proxies 的父节点,从而表征出隐式的层次结构
  • 给定三元组和 hierarchical proxies 集合 P P P ( ∣ P ∣ = 512 |P|=512 P=512),可以计算出每个 hierarchical proxy ρ ∈ P \rho\in P ρP x i , x j x_i,x_j xi,xj 的 lowest common ancestor (LCA) 的概率
    在这里插入图片描述其中 d H d_H dH 为双曲空间中的距离函数。接着,由上述概率可以根据 Gumbel-max trick 采样出一个 proxy ρ i j \rho_{ij} ρij 作为 x i , x j x_i,x_j xi,xj 的 LCA
    在这里插入图片描述其中, g i j ∼ Gumbel ( 0 , 1 ) g_{ij}\sim\text{Gumbel}(0,1) gijGumbel(0,1). 同理,还可以采样出 x i , x j , x k x_i,x_j,x_k xi,xj,xk 的 LCA ρ i j k \rho_{ijk} ρijk
  • HIER 的损失函数为三个 triplet 损失函数之和
    在这里插入图片描述其中, δ = 0.1 \delta=0.1 δ=0.1. 损失函数的目的就是使得 x i , x j x_i,x_j xi,xj 接近它们的 LCA ρ i j \rho_{ij} ρij 并且远离和无关样本 x k x_k xk 的 LCA ρ i j k \rho_{ijk} ρijk,同时也让 x k x_k xk 接近 ρ i j k \rho_{ijk} ρijk 而远离 ρ i j \rho_{ij} ρij. 这将使得 ρ i j \rho_{ij} ρij 更加远离庞加莱球的中心,代表低层级的类别中心,而 ρ i j k \rho_{ijk} ρijk 更加靠近庞加莱球的中心,代表高层级的类别中心,使得样本 embed 和 proxies 形成树形的层级结构
    在这里插入图片描述

Total Objective

  • 最终的损失函数为基于超球/双曲空间的损失函数 L ML \mathcal L_{\text{ML}} LML 和 HIER 损失函数 L HIER \mathcal L_{\text{HIER}} LHIER 的加权和
    在这里插入图片描述其中, λ = 1 \lambda=1 λ=1 T x , T ρ \mathcal T_x,\mathcal T_\rho Tx,Tρ 分别为三元组集合和 proxies 集合
  • 注意,当和基于超球空间的损失函数一起使用时,在计算 hyperbolic embed 前并不会进行 L2 归一化,而是直接在最后的 embedding layer 后加上指数变换层

Experiments

  • Quantitative Results. 作者在实验中采用 proxy anchor loss 作为 metric learning objective L ML \mathcal L_{\text{ML}} LML
    在这里插入图片描述
  • Qualitative Results. We visualize the learned embedding vectors which are projected to a 2-dimensional Poincare ball. For visualization, we use UMAP with hyperboloid distance metric as a dimensional reduction technique.
    在这里插入图片描述
  • Analysis on Semantic Hierarchy of HIER.
    在这里插入图片描述在这里插入图片描述
  • Ablation Studies.
    (1) Impact of HIER and hyperbolic space.
    在这里插入图片描述(2) Impact of embedding dimension.
    在这里插入图片描述(3) Impact of hyperparameters.
    在这里插入图片描述

References

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值