SQL进阶部分1
1.分组查询
1.1.什么是分组查询
1.1.1.将查询结果按照1个或多个字段进行分组,字段值相同的为一组
1.2.分组使用
1.2.1.SELECT gender from employee GROUP BY gender;
1.2.2.根据gender字段来分组,gender字段的全部值只有两个('男'和'女'),所以分为了两组
1.2.3.当group by单独使用时,只显示出每组的第一条记录
1.2.4.所以group by单独使用时的实际意义不大
1.3.分组注意事项
1.3.1.在使用分组时,select后面直接跟的字段一般都出现在group by 后
1.4.group by + group_concat()
1.4.1.group_concat(字段名)可以作为一个输出字段来使用
1.4.2.表示分组之后,根据分组结果,使用group_concat()来放置每一组的某字段的值的集合
1.4.3.SELECT gender,GROUP_CONCAT(name) from employee GROUP BY gender;
·
1.5.group by + 聚合函数
1.5.1. 通过group_concat()的启发,我们既然可以统计出每个分组的某字段的值的集合,那么我们也可以通过集合函数来对这个"值的集合"做一些操作
1.5.2.使用
·查询每个部门的部门名称和每个部门的工资和
• SELECT department,SUM(salary) FROM employee GROUP BY department;
·查询每个部门的部门名称以及每个部门的人数
• SELECT department,COUNT(*) FROM employee GROUP BY department;
·查询每个部门的部门名称以及每个部门工资大于1500的人数
• SELECT department,COUNT(salary) FROM employee WHERE salary > 1500 GROUP BY department;
1.6.group by + having
1.6.1.用来分组查询后指定一些条件来输出查询结果
1.6.2.having作用和where一样,但having只能用于group by
1.6.3.查询工资总和大于9000的部门名称以及工资和
·查询每个部分的工资总和
• SELECT department,GROUP_CONCAT(salary) FROM employee GROUP BY department;
•
• SELECT department,SUM(salary) FROM employee GROUP BY department;
•
·总和大于9000
• SELECT department,SUM(salary) FROM employee GROUP BY department HAVING SUM(salary)>9000;
•
1.6.4.having与where的区别
·having是在分组后对数据进行过滤.
·where是在分组前对数据进行过滤
·having后面可以使用分组函数(统计函数)
·where后面不可以使用分组函数
·WHERE是对分组前记录的条件,如果某行记录没有满足WHERE子句的条件,那么这行记录不会参加分组;而HAVING是对分组后数据的约束。
1.6.5.查询工资大于2000的,工资总和大于6000的部门名称以及工资和
·查询工资大于2000的
• SELECT * FROM employee WHERE salary >2000;
•
·各部门工资
• SELECT department, GROUP_CONCAT(salary) FROM employee WHERE salary >2000 GROUP BY department;
•
·各部门工资总和
• SELECT department, SUM(salary) FROM employee WHERE salary >2000 GROUP BY department;
•
·各部门工资总和大于6000
• SELECT department, SUM(salary) FROM employee WHERE salary >2000
GROUP BY department HAVING SUM(salary)>6000;
•
·各部门工资总和大于6000降序排列
• SELECT department, SUM(salary) FROM employee
WHERE salary >2000
GROUP BY department
HAVING SUM(salary)>6000
ORDER BY SUM(salary) DESC;
•
1.7.书写顺序
1.7.1.
1.8.执行顺序
1.8.1.
2.LIMIT
2.1.从哪一行开始查,总共要查几行
2.2.Limit 参数1,参数2
2.2.1.参数1
·从哪一行开始查
2.2.2.参数2
·一共要查几行
2.3.角标是从0开始
2.4.格式:
2.4.1.select * from 表名 limit 0,3;
2.5.分页思路
2.5.1.
3.数据的完整性
3.1.什么是数据的完整性
3.1.1.保证用户输入的数据保存到数据库中是正确的。
3.2.如何添加数据完整性
3.2.1. 在创建表时给表中添加约束
3.3.完整性分类
3.3.1.实体完整性
3.3.2.域完整性
3.3.3.引用完整性
4.实体完整性
4.1.什么是实体完整性
4.1.1.表中的一行(一条记录)代表一个实体(entity)
4.2.实体完整性的作用
4.2.1.标识每一行数据不重复。行级约束
4.3.约束类型
4.3.1.主键约束(primary key)
4.3.2.唯一约束(unique)
4.3.3. 自动增长列(auto_increment)
4.4.主键约束
4.4.1.特点:
·每个表中要有一个主键
·数据唯一,且不能为null
4.4.2.添加方式
·CREATE TABLE 表名(字段名1 数据类型 primary key,字段2 数据类型);
·CREATE TABLE 表名(字段1 数据类型, 字段2 数据类型,primary key(要设置主键的字段));
·CREATE TABLE 表名(字段1 数据类型, 字段2 数据类型,primary key(主键1,主键2));
·联合主键
• 两个字段数据同时相同时,才违反联合主键约束。
·1.先创建表
2.再去修改表,添加主键
ALTER TABLE student ADD CONSTRAINT PRIMARY KEY (id);
4.5.唯一约束
4.5.1.特点
·指定列的数据不能重复
·可以为空值
4.5.2.格式
·CREATE TABLE 表名(字段名1 数据类型 字段2 数据类型 UNIQUE);
4.6. 自动增长列
4.6.1.特点
·指定列的数据自动增长
·即使数据删除,还是从删除的序号继续往下
4.6.2.格式:
·CREATE TABLE 表名(字段名1 数据类型 PRIMARY KEY AUTO_INCREMENT ,字段2 数据类型 UNIQUE);
5.域完整性
5.1.使用
5.1.1.限制此单元格的数据正确,不对照此列的其它单元格比较
5.1.2.域代表当前单元格
5.2.域完整性约束
5.2.1.数据类型
·数值类型、日期类型、字符串类型
5.2.2.非空约束(not null)
·CREATE TABLE 表名(字段名1 数据类型 PRIMARY KEY AUTO_INCREMENT ,字段2 数据类型 UNIQUE not null);
5.2.3. 默认值约束(default)
·CREATE TABLE 表名(字段名1 数据类型 PRIMARY KEY AUTO_INCREMENT ,字段2 数据类型 UNIQUE not null default '男');
·插入的时候,values当中的值直接给default
6.参照完整性
6.1.什么是参照完整性
6.1.1.是指表与表之间的一种对应关系
6.1.2.通常情况下可以通过设置两表之间的主键、外键关系,或者编写两表的触发器来实现。
6.1.3.有对应参照完整性的两张表格,在对他们进行数据插入、更新、删除的过程中,系统都会将被修改表格与另一张对应表格进行对照,从而阻止一些不正确的数据的操作。
6.2.数据库的主键和外键类型一定要一致;
6.3.两个表必须得要是InnoDB类型
6.4.设置参照完整性后 ,外键当中的内值,必须得是主键当中的内容
6.5.一个表设置当中的字段设置为主键,设置主键的为主表
6.5.1.CREATE TABLE student(sid int PRIMARY key,name varchar(50) not null,sex varchar(10) default '男');
6.6.创建表时,设置外键,设置外键的为子表
6.6.1.CREATE TABLE score(
sid INT,
score DOUBLE,
CONSTRAINT fk_stu_score_sid FOREIGN KEY(sid) REFERENCES student(sid));
·