pytorch 7月26日学习---pix2pix代码学习2

一. model

1. GeneratorUNet

class UNetDown(nn.Module):
    def __init__(self, in_size, out_size, normalize=True, dropout=0.0):
        super(UNetDown, self).__init__()
        layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]
        if normalize:
            layers.append(nn.InstanceNorm2d(out_size))
        layers.append(nn.LeakyReLU(0.2))
        if dropout:
            layers.append(nn.Dropout(dropout))
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)

class UNetUp(nn.Module):
    def __init__(self, in_size, out_size, dropout=0.0):
        super(UNetUp, self).__init__()
        layers = [  nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),
                    nn.InstanceNorm2d(out_size),
                    nn.ReLU(inplace=True)]
        if dropout:
            layers.append(nn.Dropout(dropout))

        self.model = nn.Sequential(*layers)

    def forward(self, x, skip_input):
        x = self.model(x)
        x = torch.cat((x, skip_input), 1)

        return x

class GeneratorUNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3):
        super(GeneratorUNet, self).__init__()

        self.down1 = UNetDown(in_channels, 64, normalize=False)
        self.down2 = UNetDown(64, 128)
        self.down3 = UNetDown(128, 256)
        self.down4 = UNetDown(256, 512, dropout=0.5)
        self.down5 = UNetDown(512, 512, dropout=0.5)
        self.down6 = UNetDown(512, 512, dropout=0.5)
        self.down7 = UNetDown(512, 512, dropout=0.5)
        self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)

        self.up1 = UNetUp(512, 512, dropout=0.5)
        self.up2 = UNetUp(1024, 512, dropout=0.5)
        self.up3 = UNetUp(1024, 512, dropout=0.5)
        self.up4 = UNetUp(1024, 512, dropout=0.5)
        self.up5 = UNetUp(1024, 256)
        self.up6 = UNetUp(512, 128)
        self.up7 = UNetUp(256, 64)


        self.final = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.ZeroPad2d((1, 0, 1, 0)),
            nn.Conv2d(128, out_channels, 4, padding=1),
            nn.Tanh()
        )


    def forward(self, x):
        # U-Net generator with skip connections from encoder to decoder
        d1 = self.down1(x)
        d2 = self.down2(d1)
        d3 = self.down3(d2)
        d4 = self.down4(d3)
        d5 = self.down5(d4)
        d6 = self.down6(d5)
        d7 = self.down7(d6)
        d8 = self.down8(d7)
        u1 = self.up1(d8, d7)
        u2 = self.up2(u1, d6)
        u3 = self.up3(u2, d5)
        u4 = self.up4(u3, d4)
        u5 = self.up5(u4, d3)
        u6 = self.up6(u5, d2)
        u7 = self.up7(u6, d1)

        return self.final(u7)

2. Discriminator

class Discriminator(nn.Module):
    def __init__(self, in_channels=3):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, normalization=True):
            """Returns downsampling layers of each discriminator block"""
            layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]
            if normalization:
                layers.append(nn.InstanceNorm2d(out_filters))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *discriminator_block(in_channels*2, 64, normalization=False),
            *discriminator_block(64, 128),
            *discriminator_block(128, 256),
            *discriminator_block(256, 512),
            nn.ZeroPad2d((1, 0, 1, 0)),
            nn.Conv2d(512, 1, 4, padding=1, bias=False)
        )

    def forward(self, img_A, img_B):
        # Concatenate image and condition image by channels to produce input
        img_input = torch.cat((img_A, img_B), 1)
        return self.model(img_input)

二. 训练过程

1. Train Generators

        # ------------------
        #  Train Generators
        # ------------------

        optimizer_G.zero_grad()

        # GAN loss
        fake_B = generator(real_A)
        pred_fake = discriminator(fake_B, real_A)
        loss_GAN = criterion_GAN(pred_fake, valid)
        # Pixel-wise loss
        loss_pixel = criterion_pixelwise(fake_B, real_B)

        # Total loss
        loss_G = loss_GAN + lambda_pixel * loss_pixel

        loss_G.backward()

        optimizer_G.step()

2. Train Discriminator

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Real loss
        pred_real = discriminator(real_B, real_A)
        loss_real = criterion_GAN(pred_real, valid)

        # Fake loss
        pred_fake = discriminator(fake_B.detach(), real_A)
        loss_fake = criterion_GAN(pred_fake, fake)

        # Total loss
        loss_D = 0.5 * (loss_real + loss_fake)

        loss_D.backward()
        optimizer_D.step()

 

源代码网址:https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/pix2pix

### 回答1: pix2pix是一种生成对抗网络(GAN),它使用图像-图像转换作为其主要任务。使用pytorch实现pix2pix代码需要实现以下步骤: 1. 准备数据:下载并预处理图像数据集。 2. 定义生成器:使用卷积层、激活函数和转置卷积层构建生成器。 3. 定义判别器:使用卷积层、激活函数和全连接层构建判别器。 4. 定义损失函数:使用二分类交叉熵损失函数计算生成器和判别器的损失。 5. 训练模型:使用pytorch优化器训练模型,并使用训练数据进行迭代。 6. 测试模型:使用测试数据评估模型的性能。 以上是pix2pix代码的大致流程,详细实现可以参考相关代码和教程。 ### 回答2: Pix2pix是一种生成对抗网络(GAN)模型,它可以将类别标签转换为真实的图像数据。Pix2pix的生成器模型接收输入,然后输出一个图像,这个图像可以被分类器模型识别出来。换句话说,Pix2pix模型可以通过学习输入图像和输出图像之间的关系来生成新的图像。 PyTorch是一个用于Python的机器学习库,用于GPU加速的张量和动态构建的神经网络。PyTorchPix2pix提供了强大的API,允许我们使用PyTorch编写更加高效的代码Pix2pix代码中,包括两个网络:生成器和鉴别器。生成器网络将一个随机噪声向量作为输入,并输出一幅图像。鉴别器网络接收一幅图像,并将其分类为真实图像或生成图像。这两个网络共同工作,可以通过对抗训练的方式反复迭代,不断提高生成器网络的质量。 Pix2pix网络的关键之处在于损失函数的设计。我们采用了L1损失和对抗损失来衡量生成图像与目标图像之间的差异。L1损失是指两个向量距离的绝对值之和,对抗损失是指生成器和鉴别器之间的二分类交叉熵损失。在训练过程中,我们可以使用反向传播算法来最小化这两个损失函数。 PyTorch提供了诸如Adam和SGD等许多优化器,用于加快学习速度和优化损失函数。我们可以调整网络的超参数,例如学习速率和批量大小,以改善模型的表现。 总之,Pix2pixPyTorch都是机器学习领域中非常具有影响力的工具和框架。Pix2pix代码基于深度学习的原理,通过 PyTorch 框架实现,使得学习和使用 pix2pix 变得更加简单和有效。 ### 回答3: pix2pix是一种图像到图像的翻译模型,它通过输入一张图片,然后生成与之对应的另一张图片。本文主要介绍pix2pix代码pytorch中的详解。 1. 准备数据集 pix2pix需要输入一副图像,输出与之对应的另一幅图像。一般情况下,我们可以使用数据增强的方法来扩大数据集,使得训练模型更加准确。在pytorch中,我们可以使用torchvision.transforms对数据进行扩增。 2. 构建模型 pix2pix是一种基于GAN的模型。我们需要两个模型:生成器和鉴别器。生成器是一个卷积神经网络,把输入图像转化为输出图像;鉴别器是另一个卷积神经网络,可以区分真实图像和生成图像。 3. 定义损失函数 我们使用对抗性损失函数,计算生成器能够生成与真实图像相同的图像的概率。同时,为了保证生成的图像与真实图像相似,我们还需要使用L1损失。 4. 训练模型 在训练过程中,我们将生成器和鉴别器分别训练。生成器需要尽可能地生成与真实图像相同的图像,而鉴别器则需要能够准确区分真实图像和生成图像。训练过程需要在生成器和鉴别器之间进行迭代,直到两个模型都收敛为止。 5. 测试模型 在测试模型时,我们可以使用生成器生成图像,并将生成的图像与真实图像进行比较,从而衡量模型的性能。 总之,pix2pix代码pytorch中的详解包括准备数据集、构建模型、定义损失函数、训练模型以及测试模型五个方面。这里的步骤仅供参考,实际应用中还需要根据具体情况进行调整。通过深入学习pix2pix代码的实现方式,我们可以更好地理解和掌握该算法,以更好地应用于实践中。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值