pytorch
scut_lrr
这个作者很懒,什么都没留下…
展开
-
[yolov5目标检测] Ubuntu18.04安装tensorrt加速网络推理
1.安装cuda10.0和cudnn7.6.5dpkg -l | grep cuda查看cuda安装情况,若发现有libcudnn版本不适应(即安装的cuda版本不是10.0)使用以下命令删除:sudo dpkg --purge libcudnn7-devsudo dpkg --purge libcudnn72.下载tensorrt的deb文件并安装参考:nVidia官方安装指导sudo dpkg -i nv-tensorrt-repo-${os}-${tag}_1-1_原创 2020-11-13 21:28:39 · 1542 阅读 · 9 评论 -
ubuntu16.04+nvidia显卡驱动+cuda10.0+cudnn7.4.2+anaconda+pytorch
一、安装双系统可以查看我的另一篇博客:ubuntu16.04安装 安装好ubuntu之后就可以返回看这篇博客继续安装惹~二、nvidia显卡驱动安装查看显卡型号(确保自己配备显卡 2333~)sudo lshw -numeric -C display禁止第三方驱动:sudo gedit /etc/modprobe.d/blacklist.conf在文档末尾输入:blacklist amd76x_edacblacklist nouveau option nouveau..原创 2020-09-14 15:59:29 · 405 阅读 · 0 评论 -
RuntimeError: fractional_max_pool2d_backward_out_cuda failed with error code 0
class DeepWise_MaxPool(nn.MaxPool1d): def __init__(self, channels): super(DeepWise_MaxPool, self).__init__(channels) def forward(self, input): n, c, h, w = input.size() input = input.view(n, c, h * w).permute(0, 2, 1) .原创 2020-09-10 13:37:47 · 944 阅读 · 1 评论 -
ubuntu16.04 + cuda10.0 + cudnn7.4.2 + pytorch1.4.0 + torchvision0.5.0
敲黑板!!!版本对应真的超级重要!! 首先输入 nvidia-smi查看自己的显卡版本(安装显卡可以参考我的另一篇博客),对应关系如下: 笔者的显卡驱动是410版本的,所以选择安装cuda10.0,到官网下载cuda 10.0 run文件,使用sh命令进行安装,默认安装目录是/usr/local/cuda。安装完成后使用nvcc -V查看是否安装成功,输出信息应为cuda版本号。 官网下载cudnn(可选),注意版本对应cuda 10.0的。例如cudnn 7.4.2(for linux原创 2020-09-04 20:33:04 · 523 阅读 · 0 评论 -
如何理解pytorch中GAN的生成器与判别器的参数更新
拿ESRGAN的实现代码举例:一、更新生成器若D_update_ratio==1,那么G和D之间是1:1的方式进行参数更新;若D_update_ratio==2,那么首先更新两次D再更新一次G。更新G的时候需要冻结D的梯度,避免其计算梯度耗费时间。 首先,fake_H是通过低分辨率的图像var_L经过netG生成,其require_grad为true。更新生成器的参数必须使用fake_H来回传梯度。因此在计算real_fea和pred_d_real时都需要使用detach对其进行分离,将其变为叶子原创 2020-08-23 21:54:29 · 7175 阅读 · 0 评论 -
神经网络模型可视化工具netron
netron的github地址:https://github.com/lutzroeder/Netron使用netron可视化工具可以清晰地看见神经网络的各层输入名和输出名以及具体的网络结构。相比tensorboard它更加轻量化,而且支持各种框架:各平台安装方式:测试netron。新建一个test.py文件,并与xxx.py在同一个目录下:import netro...原创 2020-03-16 22:33:03 · 623 阅读 · 0 评论 -
pytorch中函数名后有下划线和没有下划线(e.g clamp和clamp_)的区别
一般来说,在pytorch中如果对tensor的一个函数后加上了下划线,则表明这是一个in-place类型,所谓in-place类型是指在一个tensor上操作了之后,是直接修改了这个tensor,还是返回一个新的tensor,而旧的tensor并不修改。例如:clamp和clamp_可以看到,函数名后加下划线会修改原始输入,即直接改了这个tensor。...原创 2020-03-12 17:55:30 · 687 阅读 · 2 评论