专业面试题:
- 针对密码算法常见的攻击方式:大量尝试,获取超级用户的权限来修改密码,绕过密码系统。
- 欧拉回路:一个无向图存在欧拉回路的充要条件是当且仅当该图的所有顶点度数都是偶数,且该图是连通图。一个有有向图存在欧拉回路,当且仅当所有顶点的入度等于出度,并且该图是连通图。经过图中每一条边一次且仅一次,并回到起点的回路。
- 哈密顿贿回路:从图中的任意一点出发,路途中经过图中每一个结点当且仅当一次。
- 机器学习一般分为:监督学习、非监督学习、半监督学习、增强学习。监督学习,就是人们常说的分类,通过已有的训练样本去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力,监督学习里典型的例子就是KNN、SVM(拉普拉斯核,sigmoid核)。无监督学习:机器自己学习(聚类算法是无监督学习的一种),事先没有任何训练样本,而需要直接对数据进行建模。增强学习:特征就是从现有的状态出发,不断的优化自己的策略。
- 区块链:分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式,狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构, 并以密码学方式保证的不可篡改和不可伪造的分布式账本。
- 深度学习:基于深度置信网络(DBN)提出非监督贪心逐层训练算法,是机器学习中一种基于对数据进行表征学习的方法,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。应用:计算机视觉、语音识别,自然语言处理。我认为深度学习的深度在于特征的层次的抽象提取,因为浅层一般提取的都是诸如纹理,结构,色彩这些基础的特征。
- 深度学习是不是越深越好:理论上来说网络越深表达能力越强,能处理的训练数据也更多,但是训练算法未必支持。
- 计算机三维建模:三维建模是指在计算机上建立完整的产品三维数字几何模型的过程。计算机中通过三维建模建立的三维数字形体,称为三维数字模型,简称三维模型。正是因为有了三维模型的基础,人们可继续开展如CAD、CAE等工作。人脑中的物体形貌在真实空间中展现出来的过程就是三维建模过程。建模方法:软件建模,视频建模,仪器建模。
- 迁移学习:通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反