如何理解pytorch中GAN的生成器与判别器的参数更新

本文以ESRGAN为例,详细解释了在PyTorch中GAN训练过程中,生成器与判别器参数更新的策略。当D_update_ratio为1时,G和D同步更新;为2时,先更新D两次再更新G一次。在更新G时需冻结D的梯度,而在更新D时需解冻。文章还强调了detach操作在防止梯度回传中的作用,以及在批归一化处理中对梯度回传的特殊处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拿ESRGAN的实现代码举例:

一、更新生成器

  1. 若D_update_ratio==1,那么G和D之间是1:1的方式进行参数更新;若D_update_ratio==2,那么首先更新两次D再更新一次G。更新G的时候需要冻结D的梯度,避免其计算梯度耗费时间。
  2. 首先,fake_H是通过低分辨率的图像var_L经过netG生成,其require_grad为true。更新生成器的参数必须使用fake_H来回传梯度。因此在计算real_fea和pred_d_real时都需要使用detach对其进行分离,将其变为叶子节点,避免其在G中向后回传梯度。
  3. 注意:var_L和var_H本身就是用户使用dataloader获得的,因此是叶子节点,并且没有梯度,不会影响回传。例如l_g_pix中直接使用cri_pix计算损失,并没有detach。
  4. 尽管var_L是没有梯度的,但是经过netG之后fake_H是有梯度的。如果是输入有梯度,网络被冻结,输出仍然是有梯度的。两种情况是不一样的。
        # G update G first
        for p in self.netD.parameters():
            p.requires_grad = False

        self.optimizer_G.zero_grad()
        self.fake_H = self.netG(self.var_L)

        l_g_total = 0
        if step % self.D_update_ratio == 0 and step > self.D_init_iters:
            if self.cr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值