已知两点坐标求水平距离_知道两个点的坐标X,Y,如何计算出两点间的距离以及角度,公式是什么...

本文详细介绍了如何计算二维及三维空间中两点之间的距离,并给出了计算两点连线与水平方向夹角的方法。文中提供了具体的数学公式及其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开全部

如果两个点的坐标参照系相同的话,对于同一平面内(即x、y相同Z相同)计算原理就按:两点坐e68a84e8a2ad62616964757a686964616f31333366303234标点X值之差的平方加Y值之差的平方后再开平方。如果不在同一平面内(即x、y相同Z不相同),那么就是:两点坐标点X值之差的平方加Y值之差的平方再加Z值之差的平方后再开平方

假设A点坐标(x1,y1),B点坐标(x2,y2)

两点的距离为d

公式 d^2=(x2-x1)^2+(y2-y1)^2,求出d^2,然后开平方求出d了吧

角度

设直线AB的角度为C

tanC=(y2-y1)/(x2-1),求出tanC,然后算tan的反函数就得到C了。

假设平面内任意两点X,Y,其坐标分别为X(a,b)、Y(c,d),其中a≥c,d≥b . 则有以下关系式:

(XY两点距离)^2=(a-c)^2 +(d-b)^2 XY与水平方向的夹角θ(锐角):tanθ=(d-b)/(a-c)。如X(6,4),Y(3,8) ,则(XY)^2=(6-3)^2+(8-4)^2 得XY=5 tanθ=(8-4)/(6-3)=4/3 得 θ=arctan4/3 ≈76.43°

扩展资料

公式

设两个点A、B以及坐标分别为

e72e474e764def40caa84ef11489efcb.png 、 916c45365c6951ea12e7d0462ca85fcc.png ,则A和B两点之间的距离为:

d997726686787d0bd35066f158147e32.png

推论

直线上两点间的距离公式:

设直线 8967ad55289a194adc0ba4ac0a5e7630.png 的方程为 6c28c343045c403316d3c1c7af0e0ef2.png ,点 b3a74bb545a26c1d8ac402f4fe60282d.png , c9a7e5b96245c7dd3e8b520ad581aee8.png 为该线上任意两点,则

a066b8e34376323ffa480660408907fc.png这一公式即所谓圆锥曲线的弦长公式。若记

694a39826b30f846de9d5cc0716eaa71.png 为直线AB的倾斜角,则

48087342510887fe6efacb72c2bfbdc2.png

同时,若已知直线公式和其中一个点,并且给定了距离,可以反求另一个点的坐标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值