public class MergeSort {
public static void main(String[] args) {
int[] nums = {5, 2, 8, 3, 9, 1, 7, 4, 6};
mergeSort(nums, 0, nums.length - 1);
System.out.println(Arrays.toString(nums));
}
public static void mergeSort(int[] nums, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(nums, left, mid);
mergeSort(nums, mid + 1, right);
merge(nums, left, mid, right);
}
}
public static void merge(int[] nums, int left, int mid, int right) {
int[] tmp = new int[right - left + 1];
int i = left, j = mid + 1, k = 0;
while (i <= mid && j <= right) {
if (nums[i] <= nums[j]) {
tmp[k++] = nums[i++];
} else {
tmp[k++] = nums[j++];
}
}
while (i <= mid) {
tmp[k++] = nums[i++];
}
while (j <= right) {
tmp[k++] = nums[j++];
}
for (int m = 0; m < tmp.length; m++) {
nums[left + m] = tmp[m];
}
}
}
归并排序的基本思想是将待排序的序列分成两个部分,分别对这两个部分进行排序,然后将排好序的两个部分合并成一个有序序列。具体实现过程如下:
- 将待排序的序列平均分成两个子序列,递归地对这两个子序列进行归并排序。
- 合并两个已经排好序的子序列,得到完全有序的序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。虽然归并排序的空间复杂度较高,但其稳定性和时间复杂度的优秀性使其在实际应用中得到广泛使用。