出行app
1、几个利益群体:乘客,司机
乘客希望最近的司机接单(等待时间最短)
司机希望挣到更多的订单(接驾最短,距离更长,更不堵车的订单)
2、定义每个用户群体的边界值:
乘客:能接受的最长等待时间最长是X分钟
司机:能接受的最远接驾距离是xkm
3、找到平衡的公式
第一步,分析双方利益关系
第二部,定义撮合规则
双方都是希望促成交易的,矛盾点在每个人都渴望最优质的匹配对象,而优质资源是稀缺的
阶段性目标:成交率最多(更偏乘客利益),每一刻的订单被最大程度消化
撮合方案:乘客做出让步:接单的不一定是最近的司机
司机作出让步:接到的不一定是周围最大的订单
单个司乘对的成交率
成交率最大的司乘组合方式:
- 穷举多个(司乘对)间所有的排列组合方式
- 求得某种组合方式,使得对于所有乘客司机,总成交率达到最大(或者说接近最大)
出行app的司乘撮合系统
在不同的阶段目标下,产品是如何进化的
产品目标:实现平台订单的高效分发。乘客打到车,司机挣到钱
衡量指标:广义的成交率为衡量指标
案例:版本1.0以乘客为中心
阶段现状:需求较低频和稀疏,w单/天
乘客:叫到车就好
司机:对平台上无依赖,有单便好
解决方案:
- 已乘客为中心,由近到远派单
- 存在最大播单距离,以保证司机体验
需求分发优先
阶段现状:随着订单量增长,开始暴露问题:
司机听到的订单是以订单生成为触发的,订单密度足够高时,多个订单无差别分给司机。
司乘体验都出现了严重的问题。
(P2推给D1时,D1正在听P1,最终是距离更远的D2抢到了P2,甚至P1P2同时推给D1,重叠在一起,一些订单可能被丢弃)
阶段现状:需求较密集,10w单/天
乘客:打到车
司机:希望更近更好的订单(市场上存在多个叫车平台)
版本2.0以司机为中心
现状和需求发生了变化,系统需要进化
解决方案:
解决方案:A)以司机为中心,当司机需要订单时,由进及远选取周围未成交订单播单
- 存在最大播单距离,以保证司乘体验
----供给占用优先
随着订单增长,开始暴露问题:司机周围订单变得越来越多,紧按距离排序,难以将好订单筛选出来,需要进一步优化排序策略
版本2.n 以司机为中心的订单推荐系统
阶段现状:需求继续密集,>10w单/天
解决方案:
- 排序系统进化:开始引入订单长度、目的地特征、已被抢概率、取消概率、司机特征等因素,升级为基于ctr预估模型的推荐系统
- 以司机为中心,当司机需要订单时,选取周围订单,按ctr预估模型进行排序
- 存在最大播单距离,以保证司乘体验
----供给占用优先
版本3.0 以平台为中心的订单撮合系统
阶段现状:需求继续密集,>100w单/天
解决方案:
- 同时考虑整个区域内的所有乘客司机,以哪种组合方式可以达到所有人的体验最优(成交率最高)
- 存在最大播单距离,以保证司乘体验
----群体利益最大化
随着平台规模的进化和供需变化,阶段性目标持续变化,业务导向的策略架构也持续变化
小结:
策略框架:是多个功能导向型框架的集合;
寻求各个群体间的共同利益点,作为不同小框架的结合点;
最终的目的是生态繁荣。
策略框架:是多个功能导向型框架的集合,
群求多个群体检共同的利益点,作为不同小框架的结合点,最终的目的是生态繁荣。