【pytorch】模型的保存、读取;查看模型参数、梯度;查看模型某一层输出

34 篇文章 14 订阅
本文详细介绍了PyTorch中模型的保存、读取方法,包括保存整个网络、网络参数,以及跨设备的保存和加载。此外,还探讨了查看模型参数、初始化模型参数和查看某一层输出的方法,以及如何在多GPU环境下操作模型。
摘要由CSDN通过智能技术生成
### 回答1: 在 PyTorch 中,可以使用 `print()` 函数来输出模型的各个模块,以便更好地了解模型的结构和参数。一般可以使用以下代码来输出模型的各个模块。 ```python import torch import torchvision.models as models model = models.resnet18() print(model) ``` 输出结果如下: ``` ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): BasicBlock( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BasicBlock( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): Sequential( (0): BasicBlock( (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): Sequential( (0): BasicBlock( (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer4): Sequential( (0): BasicBlock( (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=512, out_features=1000, bias=True) ) ``` 从输出结果中可以看到,ResNet 模型有多个基本块(BasicBlock),每个基本块由多个卷积层(Conv2d)和批归一化层(BatchNorm2d)组成,其中第一个基本块的输入通道数为 64,输出通道数为 64,后续基本块的输入通道数和输出通道数分别为 64,128,256,512。同时,模型还包含一个平均池化层(AdaptiveAvgPool2d)和一个全连接层(Linear)。 ### 回答2: 在PyTorch中,输出模型中的各个模块可以通过以下方法来实现: 1. 首先,我们需要导入所需的库和模型。一般情况下,我们会使用torchvision提供的预训练模型。 准备模型并加载预训练权重: ```python import torch import torchvision.models as models # 指定模型 model = models.resnet50(pretrained=True) # 加载预训练权重 model.load_state_dict(torch.load('resnet50.pth')) ``` 2. 接下来,我们可以通过打印模型的结构来输出模型中的各个模块。 ```python # 打印模型结构 print(model) ``` 通过上述代码,我们可以看到模型中的各个模块以及其顺序,包括卷积层、全连接层、池化层等。 3. 如果我们只想输出某个特定模块的信息,我们可以通过以下代码实现: ```python # 打印某一层 print(model.layer1) ``` 上述代码会输出模型中的layer1层的相关信息。 总之,PyTorch提供了一种简单的方法来输出模型中的各个模块。这对于我们理解和调试深度学习模型非常有帮助。 ### 回答3: 在Pytorch中,我们可以通过使用`model.children()`方法来遍历和输出模型的每个模块。 首先,我们需要定义一个Pytorch模型,例如一个简单的神经网络模型: ```python import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc = nn.Linear(32 * 8 * 8, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = self.conv2(x) x = self.relu(x) x = self.pool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x model = MyModel() ``` 然后,我们可以使用下面的代码输出模型的各个模块: ```python for name, module in model.named_children(): print(name, module) ``` 运行以上代码,输出结果如下: ``` conv1 Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) relu ReLU() pool MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) conv2 Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) fc Linear(in_features=2048, out_features=10, bias=True) ``` 可以看到,模型中有5个模块:`conv1`、`relu`、`pool`、`conv2`和`fc`。每个模块的类型和参数信息都可以通过输出得到。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学渣渣渣渣渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值