Pytorch查看、初始化网络层参数及模型的保存与加载
1 顺序块

2 查看网络层参数
2.1 查看单层网络结果

2.2 查看所有层网络参数

3 初始化网络层参数

4 模型的保存与加载
4.1 torch.save(),torch.load()

保存时候:用torch.save(A, “B”) A为实例化的模型,B为保存的名称,保存的是整个模型和参数
加载时候:得找个东西接盘才可以,所以用 C = torch.load(“B”) B为名称,C为加载后所赋值的模型
4.2 state_dict(),load_state_dict()

保存时候:用torch.load(A.state_dict(), “B”) 保存的是参数,所以A为对象,将参数进行保存,B为保存的名称
加载时候:用C.load_state_dict(“B”) 因为只有参数,所以需要用一个和保存参数的网络结构相同的对象去加载,否则参数不知道给那一层进行赋值,所以这里的A和C有着相同的网络结构
本文介绍了如何在PyTorch中查看网络层参数,包括单层和所有层的参数展示,详细讲解了网络参数的初始化,并详细阐述了模型的保存与加载过程,涉及torch.save()、torch.load()、state_dict()和load_state_dict()等关键函数的使用方法。
2823

被折叠的 条评论
为什么被折叠?



