normalized correlation 归一化相关系数

归一化互相关(NCC)是一种统计方法,用于衡量两个随机变量之间的相关性。在图像处理中,NCC被用来度量图像之间的相似度,特别是在模板匹配中。其取值范围在-1到1之间,1表示完全相关,-1表示完全不相关。通过计算图像像素点的RGB值集合与模板图像的匹配程度,可以实现图像识别。NCC算法在图像分析和计算机视觉领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个系数和欧式距离、皮尔逊相关系数等类似,度量了统计学中两个随机变量(随机变量)的相关距离。

1 定义

我们来看一下它的定义式:
在这里插入图片描述

2 应用

2.1 衡量图片相关度

NCC是一种基于统计学计算两组样本数据相关性的算法,其取值范围为[-1, 1]之间,而对图像来说,每个像素点都可以看出是RGB数值,这样整幅图像就可以看成是一个样本数据的集合,如果它有一个子集与另外一个样本数据相互匹配则它的ncc值为1,表示相关性很高,如果是-1则表示完全不相关,基于这个原理,实现图像基于模板匹配识别算法。

参考:
https://www.zhihu.com/question/20947058
.
https://blog.csdn.net/zcj331/article/details/106938024?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学渣渣渣渣渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值