NCC(Normalized Cross Correlation)归一化互相关
图像匹配指在已知目标基准图的子图集合中,寻找与实时图像最相似的子图,以达到目标识别与定位目的的图像技术。主要方法有:基于图像灰度相关方法、基于图像特征方法、基于神经网络相关的人工智能方法(还在完善中)。基于图像灰度的匹配算法简单,匹配准确度高,主要用空间域的一维或二维滑动模版进行图像匹配,不同的算法区别主要体现在模版及相关准则的选择方面,但计算量大,不利于实时处理,对灰度变化、旋转、形变以及遮挡等比较敏感;基于图像特征的方法计算量相对较小,对灰度变化、形变及遮挡有较好的适应性,通过在原始图中提取点、线、区域等显著特征作为匹配基元,进而用于特征匹配,但是匹配精度不高。
通常又把基于灰度的匹配算法,称作相关匹配算法。相关匹配算法又分为两类:一类强调景物之间的差别程度如平法差法(SD)和平均绝对差值法(MAD)等;另一类强调景物之间的相似程度,主要算法又分成两类,一是积相关匹配法,二是相关系数法。今天我们就来说说归一化互相关系数法(NCC).
- NCC原理:
假设两幅进行匹配计算的图像中的小图像为g,大小为m×n,大图像为S,大小为M×N.用Sx,y表示S中以(x,y)为左上角点与g大小相同的子块。利用相关系数公式计算实时图和基准图之间的相关系数,得到相关系数矩阵ρ(x,y),通过对相关系数矩阵的分析,判断两幅图像是否相关。
ρ(x,y)的定义为
随机变量X和Y的(Pearson)相关系数)