【FedMD,一种利用模型蒸馏的异构FL训练方法】FedMD: Heterogenous Federated Learning via Model Distillation

FedMD是一种解决异构联邦学习问题的方法,允许参与者在保护隐私和知识产权的同时,使用各自独特的模型。通过公共数据集和模型蒸馏,FedMD平均所有本地模型的预测来创建新的训练标签,从而实现知识迁移。实验中,多个客户端设计了不同的模型,展示了FedMD在实际场景中的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文标题:FedMD: Heterogenous Federated Learning via Model Distillation

涉及 迁移学习、模型蒸馏。

异构FL

分为数据的异构 (statistical heterogeneity) 和 模型的异构 (the differences of local models)。
模型的异构FL 指的是 Each participant independently designs its own model.

研究意义

  1. realistic:in a business facing setting, where each participant has capacity(不同设备计算力不同,因此设计的模型也不同) and desire to design their own unique model.
  2. not be willing to share details of their models due to privacy and intellectual property concerns.

FedMD

Problem definition

在这里插入图片描述

实现

在这里插入图片描述
公有数据集作为媒介,利用所有 local model 对公有数据集的预测矢量的平均作为新的训练标签,返回对本地模型再进行训练,实现知识迁移式的模型蒸馏。

实验

主要看一下他是怎么设计实验的,十个 clients 每人设计了一个独特的模型,区分度在 filters 和 dropout rate 上。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学渣渣渣渣渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值