原文标题:FedMD: Heterogenous Federated Learning via Model Distillation
涉及 迁移学习、模型蒸馏。
异构FL
分为数据的异构 (statistical heterogeneity) 和 模型的异构 (the differences of local models)。
模型的异构FL 指的是 Each participant independently designs its own model.
研究意义
- realistic:in a business facing setting, where each participant has capacity(不同设备计算力不同,因此设计的模型也不同) and desire to design their own unique model.
- not be willing to share details of their models due to privacy and intellectual property concerns.
FedMD
Problem definition
实现
用公有数据集作为媒介,利用所有 local model 对公有数据集的预测矢量的平均作为新的训练标签,返回对本地模型再进行训练,实现知识迁移式的模型蒸馏。
实验
主要看一下他是怎么设计实验的,十个 clients 每人设计了一个独特的模型,区分度在 filters 和 dropout rate 上。