Apache Spark

本文介绍了ApacheSpark,一个基于RDD的并行计算框架,它改进了MapReduce的性能,支持多种编程语言和数据结构,适用于结构化、半结构化和非结构化数据处理。同时提及了与Hadoop分布式文件系统的对比。
摘要由CSDN通过智能技术生成

一、Apache Spark

1、Spark简介

    Apache Spark是用于大规模数据 (large-scala data) 处理的统一 (unified) 分析引擎

Spark官网

    Spark最早源于一篇论文Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,该论文是由加州大学柏克莱分校的Matei Zaharia等人发表的。论文中提出了一种弹性分布式数据集(即RDD)的概念

    A distributed memory abstraction that lets programmers perform n in-memory computations 
on large clusters in a fault-tolerant manner.
翻译过来就是:RDD 是一种分布式内存抽象,其使得程序员能够在大规模集群中做内存运算,
并且有一定的容错方式。而这也是整个 Spark 的核心数据结构,Spark整个平台都围绕着RDD进行。

    简而言之,Spark借鉴了MapReduce思想发展而来,保留了其分布式并行计算的优点并改进了其明显的缺陷。让中间数据存储在内存中提高了运行速度、并提供丰富的操作数据的API提高了开发速度。

    Spark是一款分布式内存计算的统一分析引擎。其特点就是对任意类型的数据进行自定义计算。

    Spark可以计算:结构化、半结构化、非结构化等各种类型的数据结构,同时也支持使用Python、Java、Scala、R以及SQL语言去开发应用程序计算数据。

    Spark的适用面非常广泛,所以,被称之为统一的 (适用面广) 的分析引擎 (数据处理)。

Hadoop分布式文件系统(一)

无善无恶心之体,有善有恶意之动。
知善知恶是良知,为善为恶是格物。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杀神lwz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值