切比雪夫多项式

博客介绍了切比雪夫多项式相关定理,包括对于任意正整数n存在满足特定等式的整系数多项式。还给出佩尔方程的定义,指出切比雪夫多项式可转换成佩尔方程的形式,其解可通过解佩尔方程来求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理1:对于任意正整数n,存在多项式T_{n}(x)U_{n}(x),且满足等式

                                  \left\{\begin{matrix} T_{n}(cos\theta )=cosn\theta \\ U_{n}(cos\theta )=\frac{sin(n+1)\theta }{sin\theta } \end{matrix}\right.

并且T_{n}(x)U_{n}(x)都是整系数多项式,首项系数分别为2^{n-1}2^{n}T_{n}(x)U_{n}(x)成为切比雪夫多项式。

定理2:

T_{n}(x)满足递推关系式

                                 T_{n+1}(x)=2xT_{n}(x)-T_{n-1}(x)

U_{n}(x)满足递推关系式

                                  U_{n}(x)=xU_{n-1}(x)+T_{n}(x)

佩尔方程的定义:

 若一个不定方程具有这样的形式:x^{2}-ny^{2}=1,则称此二元二次方程为佩尔方程。

切比雪夫多项式可以转换成佩尔方程的形式,令x=cos\theta,

                 则T_{n}(x)=cosn\theta ,U_{n-1}(x)\cdot sin\theta =sinnx

                              则T_{n}^{2}(x)-(1-x^{2})U_{n-1}^{2}(x)=1

因此多项式的解,可以通过解佩尔方程来求解。

更多文章请关注公众号<<音频核>>

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值