定理1:对于任意正整数n,存在多项式与
,且满足等式
并且与
都是整系数多项式,首项系数分别为
与
,
与
成为切比雪夫多项式。
定理2:
满足递推关系式
满足递推关系式
佩尔方程的定义:
若一个不定方程具有这样的形式:,则称此二元二次方程为佩尔方程。
切比雪夫多项式可以转换成佩尔方程的形式,令,
则,
则
因此多项式的解,可以通过解佩尔方程来求解。
更多文章请关注公众号<<音频核>>