二分法算法模板

参考:https://labuladong.gitbook.io/algo/labuladong-he-ta-de-peng-you-men
非常感谢上述链接作者,受益良多

二分查找框架:

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1; // 注意

    while(left <= right) {
        int mid = left + (right - left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
    }
    return -1;
}

二分查找关键点:

1)int left = 0, right = nums.length() - 1 / nums.length
对于右值right的初始化存在两种情形:nums.length() - 1nums.length(),这二者的区别在于前者相当于两端都闭区间[left,right]后者相当于左闭右开区间[left,right),因为索引 nums.length是越界的。
2)while中的停止条件while(left <= right)或while(left < right).
while(left <= right)的终止条件是left == right + 1,写成区间形式就是[right + 1,right],或者带个具体的数字进去 [3, 2],可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
while(left < right)的终止条件是left == right,写成区间形式就是[left,right],或者带个具体的数字进去 [2, 2],这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。因此在查找精确值target时,需要打个补丁在最后判断一下nums[left] == target ? left : -1。
3)while循环中left和right的更新
此处与第二步中介绍的搜索区间有关。
当右值初始为nums.length() - 1时,搜索区间为两端都闭区间[left,right],那么当发现索引mid不是要找的target时,下一步应该去搜索区间[left,mid - 1]或[mid + 1,right],即right = mid - 1或left = mid + 1,因为mid已经被搜索过了。
当终止条件为nums.length()时,搜索区间为左闭右开区间[left,right),那么当索引mid不是要找的target时,下一步应该去搜索区间[left,mid)或[mid + 1,right),即right = mid或left = mid + 1,同样是因为mid已经被搜索过了。注意此时while循环终止条件为while(left < right),因为如果为while(left <= right)时,最后搜索区间为[right + 1,right),但实际mid取不到right,陷入死循环。
最基本的二分查找算法为:
1、初始化 right = nums.length - 1
2、决定了我们的「搜索区间」是 [left, right]
3、决定了 while (left <= right)终止条件为left == right + 1
4、决定了 left = mid+1 和 right = mid-1
因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回

习题

1、二分查找(lt 704)

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
代码:

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int len = nums.size();
        if (len == 0) return -1;
        int left = 0,right = len - 1; // 搜索区间[left,right]
        while (left < right) { // 结束条件:left == right,会漏掉最后一个区间
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) 
                return mid;
            else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] < target) {
                left = mid + 1;
            }
        }
        // 补充最后一个区间
        return nums[left] == target ? left : -1;
    }
};

此算法的缺陷:
给你有序数组 nums = [1,2,2,2,3],target 为 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。

寻找左侧边界的二分搜索框架:

int left_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0;
    int right = nums.length(); // 注意

    while (left < right) { // 注意
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid; // 注意,不断收缩右边界
        }
    }
    return left;
}

1、此处while中采用while(left < right)是由于right初始值为nums.length(),决定了搜索区间为左闭右开[left,right)
2、while循环中left和right的更新是由于,我们的搜索区间为[left,right),所以当nums[mid]被检测后,下一步的搜索区间去掉mid分割成两个区间[left,mid)和[mid + 1,right)
3、为什么该算法能搜索做左侧边界?关键在于nums[mid] == target的处理

	 if (nums[mid] == target) {
	            right = mid;

可见,找到target时没有立即返回,而是继续缩小搜索区间的上界right,在区间[left,mid)中继续搜索,即不断地向左收缩,达到锁定左侧边界的目的。
4、最后返回left而不是right?其实两者是相同的,因为while终止条件是left == right

上述right的初值为nums.length(),我们再看看初值为nums.length() - 1的情形。
1、right = nums.length() - 1,搜索区间为[left,right],决定了while结束条件为(left <= right),终止条件为(right + 1 == right)
2、因为搜索区间是两端都闭的,且现在搜索的是左侧边界,那么left和right的更新逻辑为:

if(nums[mid] < target) {
        left = mid + 1;
} else if (nums[mid > target]) {
        right = mid - 1;
} else if (numd[mid] == target) {
        // 收缩右侧边界
        right = mid - 1; 
}

由于while的终止条件为left == right + 1,所以当target比所有元素都大时,会存在越界的情况,因此在最后返回结果时应该检查越界情况:

if (left >= nums.length || nums[left] != target)
    return -1;
return left;

因此,完整代码为:

int left_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    // 搜索区间为 [left, right]
    while (left <= right) { //终止条件:left == right + 1
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            // 搜索区间变为 [mid+1, right]
            left = mid + 1;
        } else if (nums[mid] > target) {
            // 搜索区间变为 [left, mid-1]
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 收缩右侧边界
            right = mid - 1;
        }
    }
    // 检查出界情况
    if (left >= nums.length || nums[left] != target)
        return -1;
    return left;
}

寻找右侧边界的二分搜索框架

int right_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0, right = nums.length;

    while (left < right) {
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            left = mid + 1; // 注意
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid;
        }
    }
    return left - 1; // 注意
}

1、为什么该算法能找到右侧边界,关键点在于:

if (nums[mid] == target) {
    left = mid + 1;

当nums[mid] == target时,此时不要立即返回,由于是搜索右边界,所以增大搜索区间的下界left,使得区间不断向右收缩,达到锁定右侧边界的目的。
2、为什么最后返回left - 1
由于while循环的结束条件是left == right,因此,left和right是一样的。最后减一是因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left-1] 可能是 target。
至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。
3、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?
类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 -1:

while (left < right) {
    // ...
}
if (left == 0) return -1;
return nums[left-1] == target ? (left-1) : -1;

4、是否也可以把这个算法的「搜索区间」也统一成两端都闭的形式呢?

int right_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 这里改成收缩左侧边界即可
            left = mid + 1;
        }
    }
    // 这里改为检查 right 越界的情况,见下图
    if (right < 0 || nums[right] != target)
        return -1;
    return right;
}
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int len = nums.size();
        if (len == 0) return -1;
        int left = 0,right = len - 1; // 搜索区间[left,right]
        while (left <= right) { // 结束条件:right + 1 == right
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) 
                return mid;
            else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] < target) {
                left = mid + 1;
            }
        }
        return -1;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值