随机森林 random forest

74 篇文章 2 订阅
53 篇文章 0 订阅

随机森林 random forest

概述:随机森林是指多棵树对样本进行训练并且预测的一种分类器,决策树相当于大师,通过自己在数据集中学习到的只是用于新数据的分类,三个臭皮匠,顶个诸葛亮

原理:

  • 数据的随机化:使得随机森林中的决策树更普遍化一点,适合更多的场景。

    (有放回的准确率在:70% 以上, 无放回的准确率在:60% 以上)

    1. 采取有放回的抽样方式 构造子数据集,保证不同子集之间的数量级一样(不同子集/同一子集 之间的元素可以重复)
    2. 利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。
    3. 然后统计子决策树的投票结果,得到最终的分类 就是 随机森林的输出结果。
    4. 如下图,假设随机森林中有3棵子决策树,2棵子树的分类结果是A类,1棵子树的分类结果是B类,那么随机森林的分类结果就是A类

    image

  • 待选择特征的随机化:

    1. 子树从所有的待选特征中随机选取一定的特征。
    2. 在选取的特征中选取最优的特征。

下图中,蓝色的方块代表所有可以被选择的特征,也就是目前的待选特征;黄色的方块是分裂特征。
左边是一棵决策树的特征选取过程,通过在待选特征中选取最优的分裂特征(别忘了前文提到的ID3算法,C4.5算法,CART算法等等),完成分裂。右边是一个随机森林中的子树的特征选取过程。

image

随机森林中的决策树彼此不同,提升系统的多样性,提升分类性能

开发:

收集数据:任何方法
准备数据:转换样本集
分析数据:任何方法
训练算法:通过数据随机化和特征随机化,进行多实例的分类评估
测试算法:计算错误率
使用算法:输入样本数据,然后运行 随机森林 算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理
  • 优缺点:

    优点:几乎不需要输入准备、可实现隐式特征选择、训练速度非常快、其他模型很难超越、很难建立一个糟糕的随机森林模型、大量优秀、免费以及开源的实现。
    缺点:劣势在于模型大小、是个很难去解释的黑盒子。
    适用数据范围:数值型和标称型
    
  • 导入样本集:

    def loadDataSet(filename:str):
        dataset = []
        with open(filename,'r') as f:
            for line in f.readlines():
                if not line:
                    continue
                lineArr = []
                # le = len(line.split(','))
                for featrue in line.split(','):
                    #strip()返回左右去除空格
                    str_f = featrue.strip()
                    # if str_f.isdigit():# 判断是否可以转化为数字
                    #     # 将这一行数据的某一列可以转化为数字的转化为float
                    #     lineArr.append(float(str_f))
                    # else:
                    #     #添加label
                    #     lineArr.append(str_f)
                    try:
                        lineArr.append(float(str_f))
                    except:
                        lineArr.append(str_f)
                dataset.append(lineArr)
        return dataset
    
  • 交叉验证,将样本集合划分成几个集合

    #交叉验证,给数据集合划分不是给数据划分
    def cross_validation_split(dataset, n_folds):
        """cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的)
        Args:
            dataset     原始数据集
            n_folds     数据集dataset分成n_flods份
        Returns:
            dataset_split    list集合,存放的是:将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的
        """
        dataset_split = list()
        dataset_copy = list(dataset)       # 复制一份 dataset,防止 dataset 的内容改变
        fold_size = len(dataset) / n_folds
        for i in range(n_folds):
            fold = list()                  # 每次循环 fold 清零,防止重复导入 dataset_split
            while len(fold) < fold_size:   # 这里不能用 if,if 只是在第一次判断时起作用,while 执行循环,直到条件不成立
                # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
                index = randrange(len(dataset_copy))
                # 将对应索引 index 的内容从 dataset_copy 中导出,并将该内容从 dataset_copy 中删除。
                # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
                # fold.append(dataset_copy.pop(index))  # 无放回的方式
                fold.append(dataset_copy[index])  # 有放回的方式
            dataset_split.append(fold)
        # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证
        return dataset_split
    
    
  • 通过指定值进行分割数据,可以理解为树的两个孩子节点

    # Split a dataset based on an attribute and an attribute value # 根据特征和特征值分割数据集
    def test_split(index, value, dataset):
        left, right = list(), list()
        for row in dataset:
            if float(row[index]) < float(value):
                left.append(row)
            else:
                right.append(row)
        return left, right
    
    
    
  • 基尼不纯系数的计算

    # Calculate the Gini index for a split dataset
    def gini_index(groups, class_values):    # 个人理解:计算代价,分类越准确,则 gini 越小
        gini = 0.0
        for class_value in class_values:     # class_values = [0, 1]就是label的值
            for group in groups:             # groups = (left, right)
                size = len(group)
                if size == 0:
                    continue
                proportion = [row[-1] for row in group].count(class_value) / float(size)
                gini += (proportion * (1.0 - proportion))    # 个人理解:计算代价,分类越准确,则 gini 越小
        return gini
    
    
  • 分割数据的最优特征

    # 找出分割数据集的最优特征,得到最优的特征 index,特征值 row[index],以及分割完的数据 groups(left, right)
    def get_split(dataset, n_features):
        class_values = list(set(row[-1] for row in dataset))  # class_values =[0, 1]
        b_index, b_value, b_score, b_groups = 999, 999, 999, None
        features = list()
        while len(features) < n_features:
            index = randrange(len(dataset[0])-1)  # 往 features 添加 n_features 个特征( n_feature 等于特征数的根号),特征索引从 dataset 中随机取
            if index not in features:
                features.append(index)
        for index in features:                    # 在 n_features 个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性
            for row in dataset:
                groups = test_split(index, row[index], dataset)  # groups=(left, right), row[index] 遍历每一行 index 索引下的特征值作为分类值 value, 找出最优的分类特征和特征值
                gini = gini_index(groups, class_values)
                # 左右两边的数量越一样,说明数据区分度不高,gini系数越大
                if gini < b_score:
                    b_index, b_value, b_score, b_groups = index, row[index], gini, groups  # 最后得到最优的分类特征 b_index,分类特征值 b_value,分类结果 b_groups。b_value 为分错的代价成本
        # print(b_score)
        return {'index': b_index, 'value': b_value, 'groups': b_groups}
    
  • 统计结果中最好的特征

    # Create a terminal node value # 输出group中出现次数较多的标签
    def to_terminal(group):
        outcomes = [row[-1] for row in group]           # max() 函数中,当 key 参数不为空时,就以 key 的函数对象为判断的标准
        return max(set(outcomes), key=outcomes.count)   # 输出 group 中出现次数较多的标签
    
  • 创建一个决策树

    # Create child splits for a node or make terminal  # 创建子分割器,递归分类,直到分类结束
    def split(node, max_depth, min_size, n_features, depth):  # max_depth = 10, min_size = 1, n_features = int(sqrt((dataset[0])-1))
        left, right = node['groups']
        del(node['groups'])
    # check for a no split
        if not left or not right:
            node['left'] = node['right'] = to_terminal(left + right)
            return
    # check for max depth
        if depth >= max_depth:   # max_depth=10 表示递归十次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合
            node['left'], node['right'] = to_terminal(left), to_terminal(right)
            return
    # process left child
        if len(left) <= min_size:
            node['left'] = to_terminal(left)
        else:
            node['left'] = get_split(left, n_features)  # node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典
            split(node['left'], max_depth, min_size, n_features, depth+1)  # 递归,depth+1计算递归层数
    # process right child
        if len(right) <= min_size:
            node['right'] = to_terminal(right)
        else:
            node['right'] = get_split(right, n_features)
            split(node['right'], max_depth, min_size, n_features, depth+1)
    
    
    # Build a decision tree
    def build_tree(train, max_depth, min_size, n_features):
        """build_tree(创建一个决策树)
        Args:
            train           训练数据集
            max_depth       决策树深度不能太深,不然容易导致过拟合
            min_size        叶子节点的大小
            n_features      选取的特征的个数
        Returns:
            root            返回决策树
        """
    
        # 返回最优列和相关的信息
        root = get_split(train, n_features)
    
        # 对左右2边的数据 进行递归的调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了
        # 例如: 性别-男女,对男使用这一特征就没任何意义了
        split(root, max_depth, min_size, n_features, 1)
        return root
    
  • 通过决策树来进行预测

    # Make a prediction with a decision tree
    def predict(node, row):   # 预测模型分类结果
        if float(row[node['index']]) < float(node['value']):
            if isinstance(node['left'], dict):       # isinstance 是 Python 中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
                return predict(node['left'], row)
            else:
                return node['left']
        else:
            if isinstance(node['right'], dict):
                return predict(node['right'], row)
            else:
                return node['right']
    
    
  • 随机森林预测

    # Make a prediction with a list of bagged trees
    def bagging_predict(trees, row):
        """bagging_predict(bagging预测)
        Args:
            trees           决策树的集合
            row             测试数据集的每一行数据
        Returns:
            返回随机森林中,决策树结果出现次数做大的
        """
    
        # 使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类
        predictions = [predict(tree, row) for tree in trees]
        return max(set(predictions), key=predictions.count)
    
    
  • 数据随机样本

    # 创建数据集合中的随机子样本
    # Create a random subsample from the dataset with replacement
    def subsample(dataset, ratio):   # 创建数据集的随机子样本
        """random_forest(评估算法性能,返回模型得分)
        Args:
            dataset         训练数据集
            ratio           训练数据集的样本比例
        Returns:
            sample          随机抽样的训练样本
        """
    
        sample = list()
        # 训练样本的按比例抽样。
        # round() 方法返回浮点数x的四舍五入值。
        n_sample = round(len(dataset) * ratio)
        while len(sample) < n_sample:
            # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
            index = randrange(len(dataset))
            sample.append(dataset[index])
        return sample
    
  • 随机森林预测算法,对所有测试集合

    # Random Forest Algorithm
    def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
        """random_forest(评估算法性能,返回模型得分)
        Args:
            train           训练数据集
            test            测试数据集
            max_depth       决策树深度不能太深,不然容易导致过拟合
            min_size        叶子节点的大小
            sample_size     训练数据集的样本比例
            n_trees         决策树的个数
            n_features      选取的特征的个数
        Returns:
            predictions     每一行的预测结果,bagging 预测最后的分类结果
        """
    
        trees = list()
        # n_trees 表示决策树的数量
        for i in range(n_trees):
            # 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性
            sample = subsample(train, sample_size)
            # 创建一个决策树
            tree = build_tree(sample, max_depth, min_size, n_features)
            trees.append(tree)
    
        # 每一行的预测结果,bagging 预测最后的分类结果
        predictions = [bagging_predict(trees, row) for row in test]
        return predictions
    
  • 通过预测值和真实值求出准确率

    # Calculate accuracy percentage
    def accuracy_metric(actual, predicted):  # 导入实际值和预测值,计算精确度
        correct = 0
        for i in range(len(actual)):
            if actual[i] == predicted[i]:
                correct += 1
        return correct / float(len(actual)) * 100.0
    
  • rerank函数:对一系列交叉验证的结果

    # 评估算法性能,返回模型得分
    def evaluate_algorithm(dataset, algorithm, n_folds, *args):
        """evaluate_algorithm(评估算法性能,返回模型得分)
        Args:
            dataset     原始数据集
            algorithm   使用的算法
            n_folds     数据的份数
            *args       其他的参数
        Returns:
            scores      模型得分
        """
    
        # 将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次 list 的元素是无重复的
        folds = cross_validation_split(dataset, n_folds)
        scores = list()
        # 每次循环从 folds 从取出一个 fold 作为测试集,其余作为训练集,遍历整个 folds ,实现交叉验证
        for fold in folds:
            train_set = list(folds)
            train_set.remove(fold)
            # 将多个 fold 列表组合成一个 train_set 列表, 类似 union all
            """
            In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']]
            In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']]
            In [22]: l=[]
            In [23]: l.append(l1)
            In [24]: l.append(l2)
            In [25]: l
            Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]]
            In [26]: sum(l, [])
            Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']]
            """
            train_set = sum(train_set, [])
            test_set = list()
            # fold 表示从原始数据集 dataset 提取出来的测试集
            for row in fold:
                row_copy = list(row)
                row_copy[-1] = None
                test_set.append(row_copy)
            predicted = algorithm(train_set, test_set, *args)
            actual = [row[-1] for row in fold]
    
            # 计算随机森林的预测结果的正确率
            accuracy = accuracy_metric(actual, predicted)
            scores.append(accuracy)
        return scores
    
  • 总体代码

    # 随机森林 randomforest
    # 收集数据:提供的文本文件
    # 准备数据:转换样本集
    # 分析数据:手工检查数据
    # 训练算法:在数据上,利用 random_forest() 函数进行优化评估,返回模型的综合分类结果
    # 测试算法:在采用自定义 n_folds 份随机重抽样 进行测试评估,得出综合的预测评分
    # 使用算法:若你感兴趣可以构建完整的应用程序,从案例进行封装,也可以参考我们的代码
    from random import seed,randrange,random
    def loadDataSet(filename:str):
        dataset = []
        with open(filename,'r') as f:
            for line in f.readlines():
                if not line:
                    continue
                lineArr = []
                # le = len(line.split(','))
                for featrue in line.split(','):
                    #strip()返回左右去除空格
                    str_f = featrue.strip()
                    # if str_f.isdigit():# 判断是否可以转化为数字
                    #     # 将这一行数据的某一列可以转化为数字的转化为float
                    #     lineArr.append(float(str_f))
                    # else:
                    #     #添加label
                    #     lineArr.append(str_f)
                    try:
                        lineArr.append(float(str_f))
                    except:
                        lineArr.append(str_f)
                dataset.append(lineArr)
        return dataset
    #交叉验证,给数据集合划分不是给数据划分
    def cross_validation_split(dataset, n_folds):
        """cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的)
        Args:
            dataset     原始数据集
            n_folds     数据集dataset分成n_flods份
        Returns:
            dataset_split    list集合,存放的是:将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的
        """
        dataset_split = list()
        dataset_copy = list(dataset)       # 复制一份 dataset,防止 dataset 的内容改变
        fold_size = len(dataset) / n_folds
        for i in range(n_folds):
            fold = list()                  # 每次循环 fold 清零,防止重复导入 dataset_split
            while len(fold) < fold_size:   # 这里不能用 if,if 只是在第一次判断时起作用,while 执行循环,直到条件不成立
                # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
                index = randrange(len(dataset_copy))
                # 将对应索引 index 的内容从 dataset_copy 中导出,并将该内容从 dataset_copy 中删除。
                # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
                # fold.append(dataset_copy.pop(index))  # 无放回的方式
                fold.append(dataset_copy[index])  # 有放回的方式
            dataset_split.append(fold)
        # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证
        return dataset_split
    
    
    # Split a dataset based on an attribute and an attribute value # 根据特征和特征值分割数据集
    def test_split(index, value, dataset):
        left, right = list(), list()
        for row in dataset:
            if float(row[index]) < float(value):
                left.append(row)
            else:
                right.append(row)
        return left, right
    
    
    # Calculate the Gini index for a split dataset
    def gini_index(groups, class_values):    # 个人理解:计算代价,分类越准确,则 gini 越小
        gini = 0.0
        for class_value in class_values:     # class_values = [0, 1]就是label的值
            for group in groups:             # groups = (left, right)
                size = len(group)
                if size == 0:
                    continue
                proportion = [row[-1] for row in group].count(class_value) / float(size)
                gini += (proportion * (1.0 - proportion))    # 个人理解:计算代价,分类越准确,则 gini 越小
        return gini
    
    
    # 找出分割数据集的最优特征,得到最优的特征 index,特征值 row[index],以及分割完的数据 groups(left, right)
    def get_split(dataset, n_features):
        class_values = list(set(row[-1] for row in dataset))  # class_values =[0, 1]
        b_index, b_value, b_score, b_groups = 999, 999, 999, None
        features = list()
        while len(features) < n_features:
            index = randrange(len(dataset[0])-1)  # 往 features 添加 n_features 个特征( n_feature 等于特征数的根号),特征索引从 dataset 中随机取
            if index not in features:
                features.append(index)
        for index in features:                    # 在 n_features 个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性
            for row in dataset:
                groups = test_split(index, row[index], dataset)  # groups=(left, right), row[index] 遍历每一行 index 索引下的特征值作为分类值 value, 找出最优的分类特征和特征值
                gini = gini_index(groups, class_values)
                # 左右两边的数量越一样,说明数据区分度不高,gini系数越大
                if gini < b_score:
                    b_index, b_value, b_score, b_groups = index, row[index], gini, groups  # 最后得到最优的分类特征 b_index,分类特征值 b_value,分类结果 b_groups。b_value 为分错的代价成本
        # print(b_score)
        return {'index': b_index, 'value': b_value, 'groups': b_groups}
    
    
    # Create a terminal node value # 输出group中出现次数较多的标签
    def to_terminal(group):
        outcomes = [row[-1] for row in group]           # max() 函数中,当 key 参数不为空时,就以 key 的函数对象为判断的标准
        return max(set(outcomes), key=outcomes.count)   # 输出 group 中出现次数较多的标签
    
    
    # Create child splits for a node or make terminal  # 创建子分割器,递归分类,直到分类结束
    def split(node, max_depth, min_size, n_features, depth):  # max_depth = 10, min_size = 1, n_features = int(sqrt((dataset[0])-1))
        left, right = node['groups']
        del(node['groups'])
    # check for a no split
        if not left or not right:
            node['left'] = node['right'] = to_terminal(left + right)
            return
    # check for max depth
        if depth >= max_depth:   # max_depth=10 表示递归十次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合
            node['left'], node['right'] = to_terminal(left), to_terminal(right)
            return
    # process left child
        if len(left) <= min_size:
            node['left'] = to_terminal(left)
        else:
            node['left'] = get_split(left, n_features)  # node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典
            split(node['left'], max_depth, min_size, n_features, depth+1)  # 递归,depth+1计算递归层数
    # process right child
        if len(right) <= min_size:
            node['right'] = to_terminal(right)
        else:
            node['right'] = get_split(right, n_features)
            split(node['right'], max_depth, min_size, n_features, depth+1)
    
    
    # Build a decision tree
    def build_tree(train, max_depth, min_size, n_features):
        """build_tree(创建一个决策树)
        Args:
            train           训练数据集
            max_depth       决策树深度不能太深,不然容易导致过拟合
            min_size        叶子节点的大小
            n_features      选取的特征的个数
        Returns:
            root            返回决策树
        """
    
        # 返回最优列和相关的信息
        root = get_split(train, n_features)
    
        # 对左右2边的数据 进行递归的调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了
        # 例如: 性别-男女,对男使用这一特征就没任何意义了
        split(root, max_depth, min_size, n_features, 1)
        return root
    
    
    # Make a prediction with a decision tree
    def predict(node, row):   # 预测模型分类结果
        if float(row[node['index']]) < float(node['value']):
            if isinstance(node['left'], dict):       # isinstance 是 Python 中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
                return predict(node['left'], row)
            else:
                return node['left']
        else:
            if isinstance(node['right'], dict):
                return predict(node['right'], row)
            else:
                return node['right']
    
    
    # Make a prediction with a list of bagged trees
    def bagging_predict(trees, row):
        """bagging_predict(bagging预测)
        Args:
            trees           决策树的集合
            row             测试数据集的每一行数据
        Returns:
            返回随机森林中,决策树结果出现次数做大的
        """
    
        # 使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类
        predictions = [predict(tree, row) for tree in trees]
        return max(set(predictions), key=predictions.count)
    
    # 创建数据集合中的随机子样本
    # Create a random subsample from the dataset with replacement
    def subsample(dataset, ratio):   # 创建数据集的随机子样本
        """random_forest(评估算法性能,返回模型得分)
        Args:
            dataset         训练数据集
            ratio           训练数据集的样本比例
        Returns:
            sample          随机抽样的训练样本
        """
    
        sample = list()
        # 训练样本的按比例抽样。
        # round() 方法返回浮点数x的四舍五入值。
        n_sample = round(len(dataset) * ratio)
        while len(sample) < n_sample:
            # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
            index = randrange(len(dataset))
            sample.append(dataset[index])
        return sample
    
    
    # Random Forest Algorithm
    def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
        """random_forest(评估算法性能,返回模型得分)
        Args:
            train           训练数据集
            test            测试数据集
            max_depth       决策树深度不能太深,不然容易导致过拟合
            min_size        叶子节点的大小
            sample_size     训练数据集的样本比例
            n_trees         决策树的个数
            n_features      选取的特征的个数
        Returns:
            predictions     每一行的预测结果,bagging 预测最后的分类结果
        """
    
        trees = list()
        # n_trees 表示决策树的数量
        for i in range(n_trees):
            # 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性
            sample = subsample(train, sample_size)
            # 创建一个决策树
            tree = build_tree(sample, max_depth, min_size, n_features)
            trees.append(tree)
    
        # 每一行的预测结果,bagging 预测最后的分类结果
        predictions = [bagging_predict(trees, row) for row in test]
        return predictions
    
    
    # Calculate accuracy percentage
    def accuracy_metric(actual, predicted):  # 导入实际值和预测值,计算精确度
        correct = 0
        for i in range(len(actual)):
            if actual[i] == predicted[i]:
                correct += 1
        return correct / float(len(actual)) * 100.0
    
    
    # 评估算法性能,返回模型得分
    def evaluate_algorithm(dataset, algorithm, n_folds, *args):
        """evaluate_algorithm(评估算法性能,返回模型得分)
        Args:
            dataset     原始数据集
            algorithm   使用的算法
            n_folds     数据的份数
            *args       其他的参数
        Returns:
            scores      模型得分
        """
    
        # 将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次 list 的元素是无重复的
        folds = cross_validation_split(dataset, n_folds)
        scores = list()
        # 每次循环从 folds 从取出一个 fold 作为测试集,其余作为训练集,遍历整个 folds ,实现交叉验证
        for fold in folds:
            train_set = list(folds)
            train_set.remove(fold)
            # 将多个 fold 列表组合成一个 train_set 列表, 类似 union all
            """
            In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']]
            In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']]
            In [22]: l=[]
            In [23]: l.append(l1)
            In [24]: l.append(l2)
            In [25]: l
            Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]]
            In [26]: sum(l, [])
            Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']]
            """
            train_set = sum(train_set, [])
            test_set = list()
            # fold 表示从原始数据集 dataset 提取出来的测试集
            for row in fold:
                row_copy = list(row)
                row_copy[-1] = None
                test_set.append(row_copy)
            predicted = algorithm(train_set, test_set, *args)
            actual = [row[-1] for row in fold]
    
            # 计算随机森林的预测结果的正确率
            accuracy = accuracy_metric(actual, predicted)
            scores.append(accuracy)
        return scores
    
    
    if __name__ == '__main__':
    
        # 加载数据
        dataset = loadDataSet('/home/ach/桌面/machine-learning/ai/randomforest/7.RandomForest/sonar-all-data.txt')
        # print(dataset)
    
        n_folds = 10        # 分成5份数据,进行交叉验证
        max_depth = 20     # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
        min_size = 1       # 决策树的叶子节点最少的元素数量
        sample_size = 1.0  # 做决策树时候的样本的比例
        # n_features = int((len(dataset[0])-1))
        n_features = 15     # 调参(自己修改) #准确性与多样性之间的权衡
        for n_trees in [1, 10, 20]:  # 理论上树是越多越好
            scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
            # 每一次执行本文件时都能产生同一个随机数
            seed(1)
            print('random=', random())
            print('Trees: %d' % n_trees)
            print('Scores: %s' % scores)
            print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
    

SK 实现随机森林

# 导入需要的包
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import  RandomForestClassifier
from sklearn.model_selection import cross_val_score
def loadDataSet(filename:str):
    dataset = []
    datalabel = []
    with open(filename,'r') as f:
        for line in f.readlines():
            if not line:
                continue
            lineArr = []
            # le = len(line.split(','))
            for featrue in line.split(','):
                #strip()返回左右去除空格
                str_f = featrue.strip()
                # if str_f.isdigit():# 判断是否可以转化为数字
                #     # 将这一行数据的某一列可以转化为数字的转化为float
                #     lineArr.append(float(str_f))
                # else:
                #     #添加label
                #     # lineArr.append(str_f)
                #     datalabel.append(str_f)
                try:
                    lineArr.append(float(str_f))
                except:
                    datalabel.append(str_f)
            dataset.append(lineArr)
    return dataset,datalabel
if __name__ == '__main__':
    # 加载数据
    dataset,datalabel = loadDataSet('/home/ach/桌面/machine-learning/ai/randomforest/7.RandomForest/sonar-all-data.txt')
    rfc = RandomForestClassifier(random_state=1,n_estimators=11,oob_score=True,max_features=15)
    # print(np.mat(dataset).shape)
    # print(np.mat(datalabel).reshape())
    # print(cross_val_score(rfc,np.mat(dataset),np.mat(datalabel).T,cv=10).mean())
    score = cross_val_score(rfc,np.mat(dataset),np.mat(datalabel).T,cv = 5)
    plt.plot(range(1,6),score,label = "Random Forest")
    plt.legend()
    plt.show()

  • 运行结果

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EogzlJD0-1578200707562)(/home/ach/.config/Typora/typora-user-images/image-20200105130239560.png)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值