先把做到这类问题汇总,等积累的足够多再来系统的总结方法
Problem 1
给出两个数组,每次可以将(ai,ai + 1)和(ai + 2k,ai + 2k + 1)互换,问a数组能否转换成b
序列转换和等价问题,要找到做变换后的不变量。然后将变换操作化归到局部,变成通用或者简单的操作。
这道题发现
1.一次交换后逆序对奇偶性不变(奇数位置的改变和偶数位置抵消)。
2.可以一次交换每个元素,直到最后三个元素
于是得出结论(大胆猜测,可以用归纳法证明)。当序列是排列时,能相互转换的充要条件是奇数、偶数位置上的集合对应相等,并且两个序列的奇偶性不同。
如果不是排列,只要奇数或者偶数集合中有相等元素,意味着逆序对可以具有两种奇偶性,相等的元素大小关系可以任意确定,所以肯定有解
再手造几组样例,发现结论正确!
#include<bits/stdc++.h>
using namespace std;
#define rep(i,l,r) for(register int i = l ; i <= r ; i++)
#define repd(i,r,l) for(register int i = r ; i >= l ; i--)
#define rvc(i,S) for(register int i = 0 ; i < (int)S.size() ; i++)
#define rvcd(i,S) for(register int i = ((int)S.size()) - 1 ; i >= 0 ; i--)
#define fore(i,x)for (register int i = head[x] ; i ; i = e[i].next)
#define forup(i,l,r) for (register int i = l ; i <= r ; i += lowbit(i))
#define fordown(i,id) for (register int i = id ; i ; i -= lowbit(i))
#define pb push_back
#define prev prev_
#define stack stack_
#define mp make_pair
#define fi first
#define se second
#define lowbit(x) (x&(-x))
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int,int> pr;
const ld inf = 2e18;
const int N = 3e6 + 10;
const int maxn = 300020;
const ll mod = 1e9 + 7;
int num,cnt[maxn];
int cnt1[maxn],cnt2[maxn];
int n;