【知识点小结】关于一些序列等价性问题的简单总结

本文对序列等价性问题进行了初步总结,探讨了如何利用变换不变量来解决此类问题。针对Problem 1,通过分析交换操作对逆序对奇偶性的影响,得出序列转换的充要条件。对于非排列序列,只要满足特定条件,也可确保有解。在Problem 2中,将操作转化为差分数组的交换,证明了判断序列相同的方法。
摘要由CSDN通过智能技术生成

先把做到这类问题汇总,等积累的足够多再来系统的总结方法

Problem 1

给出两个数组,每次可以将(ai,ai + 1)和(ai + 2k,ai + 2k + 1)互换,问a数组能否转换成b

序列转换和等价问题,要找到做变换后的不变量。然后将变换操作化归到局部,变成通用或者简单的操作。
这道题发现
1.一次交换后逆序对奇偶性不变(奇数位置的改变和偶数位置抵消)。
2.可以一次交换每个元素,直到最后三个元素
于是得出结论(大胆猜测,可以用归纳法证明)。当序列是排列时,能相互转换的充要条件是奇数、偶数位置上的集合对应相等,并且两个序列的奇偶性不同。
如果不是排列,只要奇数或者偶数集合中有相等元素,意味着逆序对可以具有两种奇偶性,相等的元素大小关系可以任意确定,所以肯定有解
再手造几组样例,发现结论正确!

#include<bits/stdc++.h>
using namespace std;

#define rep(i,l,r) for(register int i = l ; i <= r ; i++)
#define repd(i,r,l) for(register int i = r ; i >= l ; i--)
#define rvc(i,S) for(register int i = 0 ; i < (int)S.size() ; i++)
#define rvcd(i,S) for(register int i = ((int)S.size()) - 1 ; i >= 0 ; i--)
#define fore(i,x)for (register int i = head[x] ; i ; i = e[i].next)
#define forup(i,l,r) for (register int i = l ; i <= r ; i += lowbit(i))
#define fordown(i,id) for (register int i = id ; i ; i -= lowbit(i))
#define pb push_back
#define prev prev_
#define stack stack_
#define mp make_pair
#define fi first
#define se second
#define lowbit(x) (x&(-x))

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int,int> pr;

const ld inf = 2e18;
const int N = 3e6 + 10;
const int maxn = 300020;
const ll mod = 1e9 + 7;

int num,cnt[maxn];
int cnt1[maxn],cnt2[maxn];
int n;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值