【学习总结】DP优化:决策单调性 ,四边形不等式,convex hull trick及其应用

camp的讲义

决策单调性

普通单调性

分治或者二分解决

四边形不等式

参考这篇文章

f ( i , j ) = m i n f ( i , k ) + f ( k , j ) + w ( i , j ) f(i,j) = minf(i,k) + f(k,j) + w(i,j) f(i,j)=minf(i,k)+f(k,j)+w(i,j)

若w(i,j)满足:

  1. 相互包含的区间,更大的区间更劣
  2. 包含劣于交叉
    或者用XDU_Skyline 的表述:
    (1)区间包含的单调性:如果对于i≤i’<j≤j’,有w(i’,j)≤w(i,j’),那么说明w具有区间包含的单调性。(可以形象理解为如果小区间包含于大区间中,那么小区间的w值不超过大区间的w值)
    (2)四边形不等式:如果对于i≤i’<j≤j’,有w(i,j)+w(i’,j’)≤w(i’,j)+w(i,j’),我们称函数w满足四边形不等式。(可以形象理解为两个交错区间的w的和不超过小区间与大区间的w的和)

则:f(i,j)满足四边形不等式。且满足凸性: g ( i ) = f ( i , j ) − f ( i , j + 1 ) &lt; = g ( i + 1 ) = f ( i + 1 , j ) − f ( i + 1 , j + 1 ) g(i) = f(i,j) - f(i,j + 1)&lt;=g(i + 1) = f(i + 1,j) - f(i + 1,j + 1) g(i)=f(i,j)f(i,j+1)<=g(i+1)=f(i+1,j)f(i+1,j+1)
即区间长度更大的差也更大

有了这些性质,可以推导出决策点单调(证明见前面引用的博客):

p [ l ] [ r − 1 ] &lt; = p [ l ] [ r ] &lt; = p [ l + 1 ] [ r ] p[l][r- 1] &lt;= p[l][r] &lt;= p[l + 1][r] p[l][r1]<=p[l][r]<=p[l+1][r]

注意事项

决策单调性要把“决策”定义清楚!如果没有进行决策(沿用上一层决策),或者当前状态不合法一定要小心
分治解决普通单调性问题时,若更大的区间不合法,但是小区间的决策点要沿用pr(不是pl)
决策点通常是最左边的那个,并且上一段的最后一个(不是当前段的开头)
满足决策单调性则可行的决策点一定是连续的区间。
长度 <= 2的区间最好特判,要能够让长度== 3的区间能够正确转移即可。
不合法的状态初值为inf

例题

Petrozavodsk Winter-2016. JAG Contest

题意
设计不超过k轮的比赛,使得决出冠军,无聊度最低。
无聊度 = ∑ ∣ A i − A j ∣ \sum{|Ai - Aj|} AiAj , Ai为选手能力值
k <= 50 , n <= 1000

直接四边形不等式
要注意f[k][l][r]表示的至多k层的时候的最优答案,如果不足k层要最后转移
如果一开始就从f[k - 1][l][r]转移,会影响决策,因为这时的决策点未定义。

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e3 + 20;
int n,k,a[maxn],f[2][maxn][maxn],p[maxn][maxn];

int main(){
   
	scanf("%d %d",&n,&k);
	for (int i = 1 ;i <= n ; i++) scanf("%d",
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值