目录
1. 介绍目标检测网络yolo系列以及ssd系列的原理。yolo对小目标检测不好的原因,除了缩小anchor外还可以如何改善?
1. 介绍目标检测网络yolo系列以及ssd系列的原理。yolo对小目标检测不好的原因,除了缩小anchor外还可以如何改善?
大概介绍了一下,yolo及ssd是one-stage目标检测网络的代表,以及他们各自的backbone、anchor box生成方式,最近整理了一下yolo系列的各种创新点,blog地址:【论文】YOLO系列_yolo系列论文-CSDN博客,持续加更中。。
解决小目标检测不好几种方法:
增加输入图像分辨率
混合多尺度特征
设置更小更稠密的anchor
卷积神经网络设计时尽量度采用步长为1,尽可能保留多的目标特征。
2. 如何防止过拟合?
在数据层面,做数据增广,筛选高质量的特征
在网络层面,选择较简单的模型,网络剪枝,加入正则项,加drop out层,加BN层
在训练操作层面,使用Early Stopping
3. 样本中正负样本不平衡,如何解决?
1.使用类平衡交叉熵损失函数
2.对小样本做数据增广
3.FOCAL LOSS(retinanet)
4.OHEM(online hard example mining)策略,训练时通常保证正负样本1:3