计算机视觉 图像算法工程师 面试问题总结

本文总结了计算机视觉面试中常见的问题,包括目标检测网络yolo和ssd的原理、过拟合防治、样本不平衡处理、模型压缩、RetinaNet的focal loss、生成器的作用以及进程和线程的区别。通过对这些问题的探讨,揭示了图像算法工程师所需掌握的关键技术和实战技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 介绍目标检测网络yolo系列以及ssd系列的原理。yolo对小目标检测不好的原因,除了缩小anchor外还可以如何改善?

2. 如何防止过拟合?

3. 样本中正负样本不平衡,如何解决?

4. 使用什么手段尽量保证精度不损失压缩模型?

5. RetinaNet了解吗?

7. 面试官随便构造一个网络,现场计算感受野

8. 简述GAN网络原理

9. python中的生成器是做什么的?

10. 进程和线程的区别,数组和链表的区别


1. 介绍目标检测网络yolo系列以及ssd系列的原理。yolo对小目标检测不好的原因,除了缩小anchor外还可以如何改善?

大概介绍了一下,yolo及ssd是one-stage目标检测网络的代表,以及他们各自的backbone、anchor box生成方式,最近整理了一下yolo系列的各种创新点,blog地址:【论文】YOLO系列_yolo系列论文-CSDN博客,持续加更中。。

解决小目标检测不好几种方法:

增加输入图像分辨率

混合多尺度特征

设置更小更稠密的anchor

卷积神经网络设计时尽量度采用步长为1,尽可能保留多的目标特征。

2. 如何防止过拟合?

    在数据层面,做数据增广,筛选高质量的特征

    在网络层面,选择较简单的模型,网络剪枝,加入正则项,加drop out层,加BN层

    在训练操作层面,使用Early Stopping

3. 样本中正负样本不平衡,如何解决?

    1.使用类平衡交叉熵损失函数

    2.对小样本做数据增广

    3.FOCAL LOSS(retinanet)

    4.OHEM(online hard example mining)策略,训练时通常保证正负样本1:3

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值