回溯和dfs的关系?
回溯是与dfs结合的一种方法,回溯的核心是状态重置,通常会定义一个栈tmp,往下走一个depth,向栈尾添加元素;往回走一个depth,栈尾撤一个元素tmp.pop(),即状态重置。实现全局使用一个tmp栈的效果。
剪枝即在树结构的dfs遍历过程中,根据某些条件,跳过当前节点的遍历
回溯代码框架:
#candidates: 输入(数组)
#res:表示所有可行解
#tmp: 临时栈
#used: 标记某个元素是否已使用,用于candidates不能重复被选取的场景
res, tmp = [], []
used = [False for _ in range(len(candidates))] #根据实际题目要求判断是否需要此数组
def dfs(depth, idx):
if ok: #满足跳出递归条件
res.append(tmp[:])
return
for i in range(idx, len(candidates)):
if used[i] == False:
tmp.append() #栈尾追加元素
used[i] = True #标记该元素已被选取
dfs(depth+1, i+1)
tmp.pop() #栈尾删除元素
used[i] = False #元素被上述操作删除,更新该元素状态,未被选取
return res
力扣经典题:
树结构回溯:
78. 子集(回溯)
46. 全排列(回溯)
47. 全排列 II (回溯+剪枝)
39. 组合总和(回溯)
40. 组合总和 II(回溯+剪枝)(剪枝方法同47)
二维数组结构回溯:
值得学习的回溯相关讲解:
李威威大佬题解:力扣
非常详细的递归过程,理解代码:看完必会的回溯算法入门攻略,我奶看了都说妙 - 知乎