小白学Pytorch系列--Torch.nn API Distance Functions(13)

本文介绍了Pytorch库中的两个函数,nn.CosineSimilarity用于计算向量间的余弦相似度,nn.PairwiseDistance则用于计算向量或矩阵列的成对距离。示例展示了如何使用这两个函数处理随机生成的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小白学Pytorch系列–Torch.nn API Distance Functions(13)

方法注释
nn.CosineSimilarity返回沿着dim计算的x1和x2之间的余弦相似度。
nn.PairwiseDistance计算输入向量之间或输入矩阵列之间的成对距离。

nn.CosineSimilarity

>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
>>> output = cos(input1, input2)

nn.PairwiseDistance

计算输入向量之间或输入矩阵列之间的成对距离。

>>> pdist = nn.PairwiseDistance(p=2)
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> output = pdist(input1, input2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发呆的比目鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值