实战
文章平均质量分 64
关于项目代码讲解部分
发呆的比目鱼
凡尔赛程序狗一枚,日常划水!! 目前专注于生物医学与计算机交叉学科。 承接各种学生作业,论文复现!!
展开
-
分子数据前期清洗流程
分子数据前期清洗流程原创 2023-05-03 20:42:30 · 322 阅读 · 1 评论 -
关于少样本Transformer微调的稳定性
关于少样本Transformer微调的稳定性Introduction微调 Transformer 模型往往表现出训练不稳定。即使具有相同的超参数值(学习率、批量大小等),不同的随机种子也会导致截然不同的结果。这个问题更加明显,尤其是在小数据集上使用大型Transformer时。本notebook将深入探讨少样本微调优化过程和技术的不同方面。目标是更好地理解我们必须处理一些样本微调问题的不同补救措施。Problem自 BERT 引入以来,Transformer 微调过程的不稳定性就已为人所知,从那时原创 2021-07-05 00:29:16 · 826 阅读 · 0 评论 -
超参数优化专题之工具—wandb/wandb(2)
超参数优化专题之工具转载 2022-08-28 14:52:27 · 3443 阅读 · 0 评论 -
超参数优化专题之工具—microsoft/nni(1)
超参数优化专题之工具—microsoft/nni(1)原创 2022-08-28 11:57:59 · 691 阅读 · 0 评论 -
基于scrapyd + scrapydweb 的可视化部署
基于scrapyd + scrapydweb 的可视化部署部署组件概览该部署方式适用于 scrapy项目、scrapy-redis的分布式爬虫项目需要安装的组件有: 1、scrapyd 服务端 【运行打包后的爬虫代码】(所有的爬虫机器都要安装) 2、logparser 服务端 【解析爬虫日志,配合scraoydweb做实时分析和可视化呈现】(所有的爬虫机器都要安装) 3、scrapyd-client 客户端 【将本地的爬虫代码打包成 egg 文件】(只要本地开发机安装即可)转载 2022-03-02 17:23:36 · 970 阅读 · 0 评论 -
YAML加载参数
YAML加载参数data_arguments: task_name: translatemodel_arguments: hidden_size: 100training_arguments: train_range: 0.95python加载参数 # pip install pyyaml=5.3.1 f = open("houchang/01_abstract/03_seq2seq_att/config.yml", "r") a = yaml.load(f)原创 2022-03-02 14:01:27 · 451 阅读 · 0 评论 -
jieba基础
jieba基础分词# 精确模式 试图将语句最精确的切分,不存在冗余数据,适合做文本分析seg_str='上海自来水厂生产的自来水来自海上'jieba.lcut(seg_str)#全模式将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据jieba.lcut(seg_str,cut_all=True)# 搜索引擎模式:在精确模式的基础上,对长词再次进行切分jieba.lcut_for_search(seg_str)添加词语# 手动添加jieba.add_word(wor原创 2022-02-05 00:09:56 · 209 阅读 · 0 评论 -
Transformer简版实战教程
Transformer简版实战教程至于Transformer的理论内容可以参考Transformer 与 Attention和Transformer 与 Attention的一些Trick本文主要实战, 这是一个简单版本的Transformer实现,也便于大家理解。准备需要准备的是翻译的语料集sentences以及模型参数src_vocab-输入词表, tgt_vocab目标词表,src_len 和tgt_len是句子的最大长度,d_model是hidden_size维度大小, d_ff是前馈网络原创 2021-12-22 17:46:54 · 6542 阅读 · 0 评论 -
ELMO实战-命名实体识别
ELMO模型实战-命名实体识别数据处理import numpy as npimport torchimport os# shared global variables to be imported from model alsoUNK = "$UNK$"NUM = "$NUM$"NONE = "O"# special error messageclass MyIOError(Exception): def __init__(self, filename): #原创 2021-08-14 14:13:11 · 540 阅读 · 0 评论 -
WORD2VEC-使用GLOVE训练中文词向量
WORD2VEC-使用GLOVE训练中文词向量准备语料语料预处理去停用词去除所有标点符号 ?!@#$%^&*()~`,./|重音字过滤掉频率低的单词处理数字 每个数字都替换为 #number单词转小写如下图:训练语料从GitHub下载代码将语料xxx.txt放入到Glove的主文件夹下。git clone https://github.com/stanfordnlp/GloVe修改代码修改demo.sh脚本注释下载test.zip的语料脚本修改训练参数原创 2021-07-22 16:05:48 · 681 阅读 · 1 评论 -
torchserve部署模型
torchserve部署模型docker版本不能太低,我装的19.03.13下载项目文件git clone https://github.com/pytorch/serve.gitcd serve/docker构建docker image(cpu版本)DOCKER_BUILDKIT=1 docker build --file Dockerfile -t torchserve:latest .或者docker pull pytorch/torchserve:latest可用所有tags转载 2021-07-07 23:55:50 · 1471 阅读 · 0 评论