最短路---Dijkstra小根堆优化

啥叫堆 可以看一下这个 https://www.cnblogs.com/xiugeng/p/9645972.html#_label0
普通Dijkstra可以看一下 https://blog.csdn.net/weixin_42488861/article/details/97394821
堆优化的进阶 https://blog.csdn.net/scar_halo/article/details/82825418
大佬的堆优化 https://blog.csdn.net/major_zhang/article/details/72519233

那么堆优化又是咋优化,一般是使用STL的优先队列priority_queue实现的,本来普通Dijkstra算法所需时间复杂度为O(v^2),v为路径的数量。
使用了堆优化之后,所需要的时间复杂度为O(E*logV), E为顶点数量,为什么呢,因为堆操作所需要的时间复杂度为O(logV),堆优化还采用了邻接表形式存储相邻顶点,更新路径操作有**O(E)**次,把每个顶点当前的最短路径用堆维护。

顺便提一句,Dijkstra不能处理含有负权的图,为什么呢

在这里插入图片描述
如图所示,若用Dijkstra处理,则第一次标记的是点2,距离为3,并且无法再更新,然而实际上点2的距离应该是通过3去松弛,距离为-1,1->3->2才是最优结果.
所以遇到具有负权的图应该用bellman-ford或者spfa处理

如何挑选应该使用的最短路算法:
①当权值为非负时,用Dijkstra。
②当权值有负值,且没有负圈,则用SPFA,SPFA能检测负圈,但是不能输出负圈。
③当权值有负值,而且可能存在负圈,则用BellmanFord,能够检测并输出负圈。
④SPFA和bellman-ford检测负环:当存在一个点入队大于等于V次时,则有负环。

Dijkstra与spfa的区别:
Dijkstra适用于稠密图,而spfa适用于稀疏图,但尽量不要使用spfa容易被卡数据,建议稀疏图使用dijkstra堆优化
spfa时间复杂度为O(kE) ->O(VE),k为期望值<=2,最差的情况下是O(VE)
稀疏图和稠密图的定义:
数据结构中对于稀疏图的定义为:有很少条边或弧(边的条数|E|远小于|V|²)的图称为稀疏图(sparse graph),反之边的条数|E|接近|V|²,称为稠密图(dense graph)。

详情见于
https://www.cnblogs.com/flipped/p/6830073.html

来看一道题目:
https://vjudge.net/problem/POJ-3255

Descriptions

Bessie搬到了一个新的农场,有时候他会回去看他的老朋友。但是他不想很快的回去,他喜欢欣赏沿途的风景,所以他会选择次短路,因为她知道一定有一条次短路。
这个乡村有R(1<=R<=100000)条双向道路,每一条连接N(1<=N<=5000)个点中的两个。Bessie在1号节点,他的朋友家是n号节点Input第一行:两个整数N和R
接下来R行:每行包含三个整数,A,B,D,表示一条连接A与B的长度为D的路径Output输出1到n的次短路

Sample Input

4 4
1 2 100
2 4 200
2 3 250
3 4 100
Sample Output

450
Hint

两条路线:1 - > 2 - > 4(长度100 + 200 = 300)和1 - > 2 - > 3 - > 4(长度100 + 250 + 100 = 450)

AC代码:

#include<iostream>
#include<cstring>
#include<math.h>
#include<stdlib.h>
#include<cstring>
#include<cstdio>
#include<utility>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=5005;
struct edge{
	int to,cost;
}; 
int n,m;
typedef pair<int ,int>p;///first 是最短距离 second是顶点 
vector<edge>G[maxn];//邻接表 
int dis[5005],e[5005][5005],vis[5005],dis2[5005];
void dijkstra(){
	priority_queue<p,vector<p>,greater<p> >q;
	memset(dis,inf,sizeof(dis));
	memset(dis2,inf,sizeof(dis2));
	dis[1]=0;
	q.push(p(0,1));
	while(!q.empty()){
		p now=q.top();q.pop();
		int v=now.second,d=now.first;
		if(dis2[v]<d)continue;
		
		for(int i=0;i<G[v].size();i++){//v连接了几个点 
			edge e=G[v][i];
			int d2=d+e.cost;//当前点的最短距离加上与相邻点的距离 
			if(dis[e.to]>d2){
				swap(dis[e.to],d2);//松弛 
				q.push(p(dis[e.to],e.to));
			}
			if(dis2[e.to]>d2&&dis[e.to]<d2){
				dis2[e.to]=d2;
				q.push(p(dis2[e.to],e.to));
			}
		} 
		
		
	}
	cout<<dis2[n];
	
}
int main( )
{	
	ios::sync_with_stdio(false);
    cin.tie(0);
    int from;
    while(cin>>n>>m){
    	
    	edge now;
    	for(int i=1;i<=m;i++){
    		cin>>from>>now.to>>now.cost;
    		
    		G[from].push_back(now);
    		
    		swap(now.to,from);
    		
    		G[from].push_back(now);
    
		}
    	dijkstra(); 
    	
    }
    

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值