深度学习、语义分割
文章平均质量分 79
Nirvana Of Phoenixl
我长这么帅,确定不关注一下?有想问的随时骚扰,谢谢你长你这么好看还关注我。NirvanaPhoenixl
展开
-
KNN最近邻算法分析及实现(Python实现)
最近邻(K-Nearest Neighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。K近邻法(K-Nearest Neighbor, KNN)是一种基本分类与回归方法,其基本做法是:给定测试实例,基于某种距离度量找出训练集中与其最靠近的K个实例点,然后基于这K个最近邻的信息来进行预测。原创 2022-11-29 14:29:28 · 3178 阅读 · 1 评论 -
深度学习入门——基于TensorFlow的鸢尾花分类实现(TensorFlow_GPU版本安装、实现)
本文主要是基于TensorFlow和Keras框架实现的鸢尾花分类,主要包含关于深度学习TensorFlow-GPU环境的搭建,以及实现框架的实现,其实验目的是实现鸢尾花分类,本质是通过简单的实践理解深度学习基本流程,加深对于代码实现的理解,通过对框架中的参数修改和完善理解调参对于框架识别精度的影响。最终目标是熟悉包括软件安装在内的深度学习环境的搭建、框架的构建、参数的调整做一个系统的学习和理解。原创 2022-11-22 16:04:47 · 3567 阅读 · 0 评论 -
主成分分析(PCA)算法模型实现及分析(MATLAB实现)PCA降维
主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法。主成分分析(Principal Component Analysis,PCA)的方法,可以将具有多个观测变量的高维数据集降维,使人们可以从事物之间错综复杂的关系中找出一些主要的方面,从而能更加有效地利用大量统计数据进行定量分析,并可以更好地由于得到协方差矩阵的特征值特征向量有两种方法:特征值分解协方差矩阵、奇异值分解协方差矩阵,所以PCA算法有两种实现方法:基于特征值分解协方差矩阵实现PCA算法、基于SVD分解协方差矩阵实现PCA算法原创 2022-07-14 20:04:56 · 16605 阅读 · 2 评论 -
关于语义分割的一些论文和代码
Segmentation语义分割相关中文总结:Instance Segmentation 比 Semantic Segmentation 难很多吗?十分钟看懂图像语义分割技术图像语义分割之FCN和CRF多篇用DL做Semantic Segmentation的文章总结参考文献:[1]《Fully Convolutional Networks for Semantic Segmentation》这是最早提出FCN的文章[2]《Semantic Image Segmentation with Deep原创 2021-03-13 11:29:00 · 295 阅读 · 1 评论