机器学习基础推导&简单应用
基本的机器学习方面的数学推导与应用举例
e咩咩
本科毕业于中山大学,硕士为密歇根大学安娜堡分校。硕士方向为Quantitative Finance and Risk Management和Applied Statistics。博士就读于佐治亚理工谢勒商学院金融系。干啥啥不行,吃啥啥没够的废柴一只。会不定期分享一些经济金融知识与理论以及相关的编程等。希望能够和大家多多交流。
展开
-
梯度下降算法基本数学推导
基本数学原理 由线性回归算法我们可得: 目标函数J(θ)即为:J(θ)=12∑i=1m(y(i)−θTx(i))2目标函数J(\theta)即为: J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}目标函数J(θ)即为:J(θ)=21∑i=1m(y(i)−θTx(i))2 在目标函数J(θ)得到后,我们并不一定能够直接进行求解,而应用梯度下降算法可以对J(θ)进行求解。 梯度:对J(θ)求偏导得原创 2020-08-17 23:34:45 · 446 阅读 · 0 评论 -
线性回归算法数学基本推导
基本数学原理 通过数据来预测一个值便可以应用回归算法。数据可以含有多个特征,想要预测的目标即为标签。每个特征对标签的影响程度即位参数。 hθ(x)=∑i=0nθixi=θTx,其中θ0为偏置项,x0=1h_{\theta}(x)=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{T} x ,其中\theta_0为偏置项,x_0 = 1hθ(x)=∑i=0nθixi=θTx,其中θ0为偏置项,x0=1 在回归的拟合过程中,真实值与预测值之间会存在误差。 y(i)=θT原创 2020-08-17 22:54:44 · 189 阅读 · 0 评论