今天的内容以绝对值的加法最小值为例,减法也类似,有兴趣的可以自己琢磨一下,此类绝对值的最小值求法被很多老师称之为“奇尖偶平中间最小”,最近遇到一个与此相关的题目,就借此说一下这个问题。
此类问题常见于不等式选讲的绝对值不等式部分,早些年也以函数的形式出现过,现在常见于各高校的自招题目中,以下面两个简单的函数为例:
1.例:y=|x-1|+|x+2|
这种函数求最值可通过分段去掉绝对值符号,作图来求最小值,也可以利用几何意义即点与点之间的距离来求最值,也可利用绝对值三角不等式,在不等式中|a|+|b|≥|a+b|,所以|x-1|+|x+2|=|x-1|+|-2-x|≥|x-1-2-x|=3,若作图,函数的图像为:

此时函数中有两个绝对值组成,且x的系数相同,函数图像为平底,在两个间断点之间取得最小值,若x的系数不同,例如y=|x-1|+|2x+2|,若把x的系数变为1,则可写成三个绝对值形式,即y=|x-1|+|x+1|+|x+1|,此时取得最值的情况和图像就和上述不同了。
2.例:y=|x+1|+|x|+|x-1|
这种情况下x的系数相同,由于是奇数个绝对值,通过绝对值三角不等式很难把右侧转化为常数形式,但如果可以把奇数个绝对值变成偶数个呢?如下:
y=|x+1|+|x|+|x-1|=½[|x+1|+|x+1|+|x|+|x|+|x-1|+|x-1|]≥½|x+1+x+1+x-x+1-x+1-x|=2
可知当绝对值内x系数相同时,无论绝对值为奇数还是偶数均可用绝对值三角不等式来解最小值,作出函数图像,如下:

可知函数在x=0处取得最小值,最小值为2,绝对值有奇数个,图像为尖底,这就是所谓的奇尖偶平,至于奇数还是偶数还得看x的系数是否一致,如y=|x-1|+|2x+2|,若将x系数都变为1,则为y=|x-1|+|x+1|+|x+1|,可知函数应为尖底,在x=-1处取得最小值,图像如下:

至于“中间最小”,是一种类似于中位数的求最小值所对应的x值方法,统一写成如下形式:

理解这些,在一些与绝对值有关的函数或不等式中的最值就很容易求出来了,下面来看与此相关的高考真题,变式题和自招题:

解析:题目为y=|x-1|+|x-2|+...+|x-19|,此时x系数相同,共有19个绝对值,因此当第10个绝对值为零,此时的x值即为取得最小值时的x值,所以当|x-10|=0,即x=10时,取得最小值,最小值为90

解析:利用换元法,令t=x²+2x,则原式变为y=|t-1|+|t-2|+|t-3|,t系数相同,共有三个绝对值,因此当第二个绝对值取得零时,原式取得最小值,即|t-2|=0,t=2,即x²+2x=2,可求出对应的x值,函数的最小值为2

第三题和第二题相同,解决此类问题的关键在于排序,确定x的系数以及绝对值的个数,最后看一个2011年北大的自招题目:

将绝对值中的x系数化为1,如下:

接下来的关键是确定第503×2011项是哪一项,可用等差数列求和不等式来确定

最后用等差求和即可求出最小值,题目结合了绝对值函数最值,不等式,数列求和等知识点,很有意思,如果知道了奇尖偶平中间最小,那么本题目就不算难解。
近期在模考导数题目中看到一类证明多项式之和不等式的问题,明天选出几个题目予以解析,相关题目也可提前看一下链接:求和型导数不等式的证明