CNN损失函数学习(最全) 损失函数的学习一、损失函数的概念二、回归损失(Regression Loss)1.L1 Loss2.L2 Loss3.Smooth L1 Loss4.IoU Loss5.GIoU Loss6.DIoU Loss7.CIoU Loss8.F-EIoU Loss8.CDIoU Loss三、分类损失1.Entropy2.Cross Entropy3.K-L Divergence4.Dice Loss5.Focal Loss6.Tversky loss总结导入一、损失函数的概念在机器学习中,损失函数是代价函数
Repulsion loss:专注于遮挡情况下的行人检测 Repulsion loss一、背景介绍二、主要内容1.遮挡分析2.Repulsion loss3.实验分析总结一、背景介绍与通用目标检测相比,遮挡情况在行人检测中更为普遍,为此也是行人检测领域最广为关注的问题之一。现实场景中行人的遮挡情况主要分为两种情况:一种是其他物体对行人的遮挡,这往往会带来目标信息的缺失,进而导致漏检;另一种是行人个体之间的相互遮挡,这往往会引入大量的干扰信息,进而导致更多的虚检。本文重点解决的是后一种情况导致的遮挡问题。作者将对这一问题进行了深入思考,并从loss的层面
Python最强最全学习资料和攻略,总结全集 Python学习(1) (python特点、优缺点)Python学习(2) (代码运行的常见错误、python解释器、注释方法、算数运算符)Python学习(3) (变量的基本使用、定义、类型、计算、类型转换、输入输出、命名)Python学习(4)( If 判断语句 、逻辑运算、elif、if嵌套、随机数、石头剪刀布程序)Python学习(5)(while循环语句、循环嵌套、break/continue、赋值运算符、转义字符等 )Python学习(6)(函数定义、调用、函数注释、形参与实参、函数返
python中plt.imshow与cv2.imshow显示图像颜色错误的问题(避坑) 最近调试程序的时候,发现显示不正常,纳闷了很久,来回测试,终于发现问题,希望大家别再入坑了。在用plt.imshow和cv2.imshow显示同一幅图时可能会出现颜色差别很大的现象。这是因为:opencv的接口使用BGR,而matplotlib.pyplot 则是RGB模式。各自显示各自图像是正常的,分别显示是不正常的。说起来很绕,还是根据程序结合结果来看。原图:import cv2 as cvimport numpy as npimport matplotlib.pyplot as pl
目标检测的NMS(非极大值抑制,Non-Maximum Suppression) 非极大值抑制NMS概述一、NMS 原理二、使用步骤1.引入库2.读入数据总结概述非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些
学习各种目标检测的FPN(多层次特征融合) 单阶段物体检测算法:早期的物体检测算法,无论是一步式的,还是两步式的,通常都是在Backbone的最后一个stage(特征图分辨率相同的所有卷积层归类为一个stage)最后一层的特征图,直接外接检测头做物体检测。此种物体检测算法,可以称之为单stage物体检测算法。由于单stage物体检测算法中,Backbone的最后一个stage的stride通常是32,导致输出的特征图分辨率是输入图片分辨率的1/32,太小,不利于物体检测,因此单stage的物体检测算法,一般会将最后一个stage的MaxPooli
SiamFC 学习(论文、总结与分析) 文章目录前言一、SiamFC 论文学习1.介绍2.深度相似学习在跟踪中的应用2.1 全卷积孪生结构3.引入库二、使用步骤1.引入库2.读入数据总结前言之前看了关于siamFC的论文、博客和代码,已经跑通了代码,但是,只是大概初步学习,没有认真的研究细节。为了后面更好的学习Siam系列的算法还是要重新认真的学习SiamFC。先附上论文和代码。论文:Fully-Convolutional Siamese Networks for Object Tracking代码:基于pytorch框架的htt
Python学习(12)(列表、元组、字典、字符串的公共方法总结) Python学习(12)python的列表、元组、字典、字符串的公共方法一、python的内置函数二、python的切片三、python 的运算符四、python 的完整的for循环语法python的列表、元组、字典、字符串的公共方法一、python的内置函数函数描述备注len(item)计算容器中元素个数del(item)删除变量del 有两种方式max(item)返回容器中元素最大值如果是字典,只针对key比较min(item)返回容器中元素最
Python学习(11)(字符串 定义、字符串常用操作归类、字符串的切片) Python学习(11)一、python的字符串 定义二、python的字符串常用操作归类1.判断类型-92.查找和替换-73.大小写替换-54.文本对齐-35.去除空白字符-36.拆分和连接-5三、python 字符串的切片一、python的字符串 定义-字符串 就是一串字符,是编程语言中表示文本的数据类型在python中可以使用 **一对双引号 “** 或者 **一对单引号 '** 定义一个字符串虽然可以使用 " 或者 ’ 做字符串的转义,但是在实际开发中:如果字
Python学习(10)(字典的定义、常用操作、循环遍历keys values items、应用场景) Python学习(10)一、python的字典 定义二、python的元组 常用操作三、python 元组的循环遍历四、python 元组的应用场景五、python 元组和列表之间的转换一、python的字典 定义dictionary (字典) 是除列表以外python之中 最灵活 的数据类型字典同样可以用来存储多个数据通常用于存储描述一个物体的相关信息字典和列表的区别1.列表是有序的对象集合2.字典是无序的对象集合字典是用 { } 定义的字典使用键值对存储数据,键值对之间
PyTorch学习笔记(1)nn.Sequential、nn.Conv2d、nn.BatchNorm2d、nn.ReLU和nn.MaxPool2d 这里写目录标题一、nn.Sequential二、nn.Conv2d一、nn.Sequentialtorch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。另外,也可以传入一个有序模块。为了更容易理解,官方给出了一些案例:# Sequential使用实例model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,
Python学习(9)(元组、定义、常用操作、循环遍历、应用场景、元组与列表的转换) Python学习(9)一、python的元组 定义二、python的列表 常用操作三、python的关键字、函数和方法的特点和区别四、python 列表的循环遍历五、python 列表的应用场景一、python的元组 定义Tuple (元组)与列表类似,不同之处在于元组的 元素不能修改元组表示多个元素组成的序列元组在python开发中,有特定的应用场景用于存储一串信息、数据之间使用 ,分隔元组用()定义元组的索引从 0 开始索引就是数据在元组中的位置编号info_tuple =
Python学习(8)(列表的定义、常用操作、关键字函数方法的区别、列表的循环遍历、应用场景) Python学习(8)一、python的列表 定义二、python的列表 常用操作三、python的关键字、函数和方法的特点和区别四、python 列表的循环遍历五、python 列表的应用场景高级变量类型列表元组字典字符串python中数据类型可以分为 数字型和非数字型数字型:整型(int)、浮点型(float)、布尔型(bool)、复数型(complex)非数字型:字符串、列表、元组、字典在python中,所有 非数字型变量都支持以下特点:- 都是一个序列 sequence,也
Python学习(7)(模块、pyc文件) Python学习(7)一、python的模块二、Pyc 文件一、python的模块模块是python程序架构的一个核心概念模块就好比是工具包,要想使用这个工具包中的工具,就需要导入import这个模块每一个以扩展名py结尾的python源代码文件都是一个模块在模块中定义的全局变量、函数都是模块能够提供给外界直接使用的工具示例:test_分隔符模块.pydef print_line(char, times): """定义一个函数能过打印 任意重复次数 的字符""" pr
Python学习(6)(函数定义、调用、函数注释、形参与实参、函数返回值、函数嵌套) Python学习(6)一、python的while 循环语句二、python的赋值运算符三、python的while 循环语句 示例一、python的while 循环语句二、python的赋值运算符三、python的while 循环语句 示例上一篇:学习 PySOT(1)(介绍、配置、使用)下一篇:学习 PySOT(1)(介绍、配置、使用)...