pandas 设置多重索引_Pandas多重索引使用详解

本文详细介绍了如何在Pandas中设置和使用多重索引,特别强调了其在处理高维数据和Series、DataFrame中的应用。通过示例展示了如何从数组列表、元组数组和交叉集创建多重索引,并提供了创建和操作多重索引的代码片段。
摘要由CSDN通过智能技术生成

多重索引被定义为非常重要的索引, 因为它处理数据分析和处理, 尤其是处理高维数据时。它还可以在Series和DataFrame等较低维度的数据结构中存储和处理任意数量的维度的数据。

它是标准索引对象的层次结构类似物, 用于将轴标签存储在pandas对象中。也可以将其定义为元组数组, 其中每个元组都是唯一的。可以从数组列表, 元组数组和可迭代的交叉集创建。

例:

arrays = [['it', 'it', 'of', 'of', 'for', 'for', 'then', 'then'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

tuples = list(zip(*arrays))

tuples

输出

[('it', 'one'), ('it', 'two'), ('of', 'one'), ('of', 'two'), ('for', 'one'), ('for', 'two'), ('then', 'one'), ('then', 'two')]

范例2:

arrays = [['it', 'it', 'of', 'of', 'for', 'for', 'then', 'then'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

tuples = list(zip(*arrays))

index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

输出

MultiIndex([('bar', 'one'), [('it', 'one'), ('it', 'two'), ('of', 'one'), ('of', 'two'), ('for', 'one'), ('for', 'two'), ('then', 'one'), ('then', 'two')]

names=['first', 'second'])

范例3:

import pandas as pd

import numpy as np

pd.MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[0, -1, 1, 2, 3, 4]])

输出

MultiIndex(levels=[[nan, None, NaT, 128, 2]], codes=[[0, -1, 1, 2, 3, 4]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值