3维数据(列号,行号,特征)
(某列号,某行号) 确定一个样本,在地理2维平面数据中,即确定了一个点。
读取数据inputs1_csv= 'gusuan.csv'
df_inputs1 = pd.read_csv(inputs1_csv)
#,dtype =float , index_col=(0,1)
df_inputs1 = df_inputs1.set_index(['COLUMN','ROW'])
66.png
多重索引选取的精髓在于 用元组来封装多个索引,在本文中为 (COLUMN, ROW)
我们先选取一个样本df_inputs1.loc[(0, 129),:]
一个点.png
如果这个点不存在,则会报KeyError
keyerror.png
选取多个指定的点
点( 0,129) 和 点(4,129) 放到列表里 ,即[(0,129),(4,129)]
多个点.png
可以对指定点赋值df_inputs1_copy = df_inputs1.copy()
df_inputs1_copy.loc[ ( [(0, 129),(69,129)] ), : ] = df_inputs1.loc[ ( [(0, 129),(69,129)] ),: ] +36
赋值.png
选取特征df_inputs1_copy.loc[ ([(0, 129),(69,129)] ),['BC','CO'] ] # 选取特征
选取特征.png
如果有点 不存在,则那一个点为nan, 警告未来的版本可能报错
bb.png
通过COLUMN列表和ROW列表选择之前的内容有通过多个点来选取,需求提前指定点的列号和行号[(0,129),(69,129)] 共两个点
我们也可以通过列表形式 两个点的COLUMN为 [0,69] ,ROW 为[129] 为2 *1 两个点
2乘3 6个点.png
下面可以验证下
等价.png
https://www.jianshu.com/p/a3d8534a7395