matlab朱利阵列表_使用Matlab辅助计算朱利判据

本文介绍如何利用Matlab辅助计算线性离散时间系统的朱利判据,通过编写JuryTableD3函数并结合符号计算,实现自动化判断BIBO稳定性。以一个具体的离散系统为例,展示如何应用函数计算并使用Maple接口解决不等式。
摘要由CSDN通过智能技术生成

在11月7日的日志中,我们已经了解了如何用朱利判据(Jury

Test)来研判一个线性离散时间(LDT)系统是否具有BIBO稳定性。

显然,以人工的计算方式来得到朱利判据的各个因子a0,b0,c0...是很费事的,也很容易出错。因此,我们可以考虑使用Matlab来辅助计算这些因子,并进行相应的研判。

参考11月7日的日志,通过观察可知:因子a0,b0,c0...的计算大部分是行列式运算,对应Matlab语言中的det()函数;另外,计算的过程中总是不可回避地要使用代数表达式,因此可以考虑Matlab的符号计算功能。

1.首先开列出因子a0,b0,c0…的计算函数(以三维的JuryTable为例),这是朱利判据的核心计算部分:

function V = JuryTableD3(a0, a1,

a2)

b0 =

1/a0*det([a0,a2;a2,a0]);

b1 =

1/a0*det([a0,a1;a2,a1]);

c0 =

1/b0*det([b0,b1;b1,b0]);

V{1,1} =

a0;

V{2,1} =

b0;

V{3,1} =

c0;

注意:在输出矢量V中,之所以要使用大括号”{}”,是因为得到的结果a0,b0,c0都是符号变量,需要使用单位矩阵V进行赋值传递。

2.接下来便是如何应用了,仍以11月7日的日志那个问题为样例,设定某离散系统的传递函数为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值