Python综合数据分析_RFM用户分组模型


1.导入数据

import pandas as pd #导入Pandas
df_sales = pd.read_csv('data.csv') #载入数据
df_sales.head() #显示头几行数据 

在这里插入图片描述

2.月度订单数据可视化

import matplotlib.pyplot as plt #导入Matplotlib的pyplot模块
#构建月度的订单数的DataFrame
df_sales['消费日期'] = pd.to_datetime(df_sales['消费日期']) #转化日期格式
df_orders_monthly = df_sales.set_index('消费日期')['订单号'].resample('M').nunique()
#设定绘图的画布
ax = pd.DataFrame(df_orders_monthly.values).plot(grid=True,figsize=(12,6),legend=False)
ax.set_xlabel('月份') # X轴label
ax.set_ylabel('订单数') # Y轴Label
ax.set_title('月度订单数') # 图题
#设定X轴月份显示格式
plt.xticks(
    range(len(df_orders_monthly.index)), 
    [x.strftime('%m.%Y') for x in df_orders_monthly.index], 
    rotation=45)
plt.show() # 绘图

在这里插入图片描述

3.数据清洗

df_sales = df_sales.drop_duplicates() #删除重复的数据行
df_sales.isna().sum() # NaN出现的次数

在这里插入图片描述

df_sales.describe() #df_sales的统计信息

在这里插入图片描述

df_sales = df_sales.loc[df_sales['数量'] > 0] #清洗掉数量小于等于0的数据
df_sales.describe() #df_sales的统计信息

在这里插入图片描述

4.特征工程

df_sales['总价'] = df_sales['数量'] * df_sales['单价'] #计算每单的总价
df_sales.head() #显示头几行数据  

在这里插入图片描述

5.构建User用户表

df_user = pd.DataFrame(df_sales['用户码'].unique()) #生成以用户码为主键的结构df_user
df_user.columns = ['用户码'] #设定字段名
df_user = df_user.sort_values(by='用户码',ascending=True).reset_index(drop=True) #按用户码排序
df_user #显示df_user

在这里插入图片描述

6.求R值

df_sales['消费日期'] = pd.to_datetime(df_sales['消费日期']) #转化日期格式
df_recent_buy = df_sales.groupby('用户码').消费日期.max().reset_index() #构建消费日期信息
df_recent_buy.columns = ['用户码','最近日期'] #设定字段名
df_recent_buy['R值'] = (df_recent_buy['最近日期'].max() - df_recent_buy['最近日期']).dt.days #计算最新日期与上次消费日期的天数
df_user = pd.merge(df_user, df_recent_buy[['用户码','R值']], on='用户码') #把上次消费距最新日期的天数(R值)合并至df_user结构
df_user.head() #显示df_user头几行数据

在这里插入图片描述

7.求F值

df_frequency = df_sales.groupby('用户码').消费日期.count().reset_index() #计算每个用户消费次数,构建df_frequency对象
df_frequency.columns = ['用户码','F值'] #设定字段名称
df_user = pd.merge(df_user, df_frequency, on='用户码') #把消费频率整合至df_user结构
df_user.head() #显示头几行数据

在这里插入图片描述

8.求M值

df_revenue = df_sales.groupby('用户码').总价.sum().reset_index() #根据消费总额,构建df_revenue对象
df_revenue.columns = ['用户码','M值'] #设定字段名称
df_user = pd.merge(df_user, df_revenue, on='用户码') #把消费金额整合至df_user结构
df_user.head() #显示头几行数据

在这里插入图片描述

9.显示R、F、M值的分布情况

df_user['R值'].plot(kind='hist', bins=20, title = '新进度分布直方图') #R值直方图

在这里插入图片描述

df_user.query('F值 < 800')['F值'].plot(kind='hist', bins=50, title = '消费频率分布直方图') #F值直方图

在这里插入图片描述

df_user.query('M值 < 20000')['M值'].plot(kind='hist', bins=50, title = '消费金额分布直方图') #M值直方图

在这里插入图片描述

10.显示手肘图辅助确定K值

from sklearn.cluster import KMeans #导入KMeans模块
def show_elbow(df): #定义手肘函数
    distance_list = [] #聚质心的距离(损失)
    K = range(1,9) #K值范围
    for k in K:
        kmeans = KMeans(n_clusters=k, max_iter=100) #创建KMeans模型
        kmeans = kmeans.fit(df) #拟合模型
        distance_list.append(kmeans.inertia_) #创建每个K值的损失
    plt.plot(K, distance_list, 'bx-') #绘图
    plt.xlabel('k') #X轴
    plt.ylabel('距离均方误差') #Y轴
    plt.title('k值手肘图') #标题
show_elbow(df_user[['R值']]) #显示R值聚类K值手肘图

在这里插入图片描述

show_elbow(df_user[['F值']]) #显示F值聚类K值手肘图

在这里插入图片描述

show_elbow(df_user[['M值']]) #显示M值聚类K值手肘图

在这里插入图片描述

11.创建和训练模型

from sklearn.cluster import KMeans #导入KMeans模块
kmeans_R = KMeans(n_clusters=3) #设定K=3
kmeans_F = KMeans(n_clusters=4) #设定K=4
kmeans_M = KMeans(n_clusters=4) #设定K=4
kmeans_R.fit(df_user[['R值']]) #拟合模型
kmeans_F.fit(df_user[['F值']]) #拟合模型
kmeans_M.fit(df_user[['M值']]) #拟合模型

在这里插入图片描述

12.给R值聚类

df_user['R值层级'] = kmeans_R.predict(df_user[['R值']]) #通过聚类模型求出R值的层级
df_user.head() #显示头几行数据

在这里插入图片描述

df_user.groupby('R值层级')['R值'].describe() #R值层级分组统计信息

在这里插入图片描述

13.给聚类后的层级排序

#定义一个order_cluster函数为聚类排序
def order_cluster(cluster_name, target_name,df,ascending=False):
    new_cluster_name = 'new_' + cluster_name #新的聚类名称
    df_new = df.groupby(cluster_name)[target_name].mean().reset_index() #按聚类结果分组,创建df_new对象
    df_new = df_new.sort_values(by=target_name,ascending=ascending).reset_index(drop=True) #排序
    df_new['index'] = df_new.index #创建索引字段
    df_new = pd.merge(df,df_new[[cluster_name,'index']], on=cluster_name) #基于聚类名称把df_new还原为df对象,并添加索引字段
    df_new = df_new.drop([cluster_name],axis=1) #删除聚类名称
    df_new = df_new.rename(columns={"index":cluster_name}) #将索引字段重命名为聚类名称字段
    return df_new #返回排序后的df_new对象
df_user = order_cluster('R值层级', 'R值', df_user, False) #调用簇排序函数
df_user = df_user.sort_values(by='用户码',ascending=True).reset_index(drop=True) #根据用户码排序
df_user.head() #显示头几行数据

在这里插入图片描述

df_user.groupby('R值层级')['R值'].describe() #R值层级分组统计信息

在这里插入图片描述

14.继续给F、M值聚类,并排序

df_user['F值层级'] = kmeans_F.predict(df_user[['F值']]) #通过聚类模型求出F值的层级
df_user = order_cluster('F值层级', 'F值',df_user,True) #调用簇排序函数
df_user.groupby('F值层级')['F值'].describe() #F值层级分组统计信息

在这里插入图片描述

df_user = df_user.sort_values(by='用户码',ascending=True).reset_index(drop=True) #根据用户码排序
df_user.head()

在这里插入图片描述

df_user['M值层级'] = kmeans_M.predict(df_user[['M值']]) #通过聚类模型求出M值的层级
df_user = order_cluster('M值层级', 'M值',df_user,True) #调用簇排序函数
df_user.groupby('M值层级')['M值'].describe() #M值层级分组统计信息
df_user = df_user.sort_values(by='用户码',ascending=True).reset_index(drop=True) #根据用户码排序
df_user.head() #显示头几行数据

在这里插入图片描述

15.为用户整体分组画像

df_user['总分'] = df_user['R值层级'] + df_user['F值层级'] + df_user['M值层级'] #求出每个用户RFM总分
#在df_user对象中添加总体价值这个字段
df_user.loc[(df_user['总分']<=2) & (df_user['总分']>=0), '总体价值'] = '低价值' 
df_user.loc[(df_user['总分']<=4) & (df_user['总分']>=3), '总体价值'] = '中价值' 
df_user.loc[(df_user['总分']<=8) & (df_user['总分']>=5), '总体价值'] = '高价值'
df_user #显示df_user

在这里插入图片描述

#显示高、中、低价值组分布散点图(F值与M值)
plt.scatter(df_user.query("总体价值 == '高价值'")['F值'],
                   df_user.query("总体价值 == '高价值'")['M值'],c='g',marker='*')
plt.scatter(df_user.query("总体价值 == '中价值'")['F值'],
                   df_user.query("总体价值 == '中价值'")['M值'],marker=8)
plt.scatter(df_user.query("总体价值 == '低价值'")['F值'],
                   df_user.query("总体价值 == '低价值'")['M值'],c='r')

在这里插入图片描述


参考资料:极客时间

  • 16
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
RFM模型是一种常用的客户价分析模型,通过对客户的最近一次购买时间(Recency)、购买频率(Frequency)和购买金额(Monetary)进行评估,将客户分为不同的价层次,从而制定不同的营销策略。 在Python中,我们可以使用Pandas和Numpy等库进行RFM模型的分析。以下是一个简单的RFM模型分析步骤: 1. 数据预处理:将原始数据导入Pandas DataFrame中,并对数据进行清洗和转换。 2. 计算RFM指标:通过对每个客户的购买时间、频率和金额进行计算,得到每个客户的RFM指标。 3. 分组划分:将客户按照RFM指标进行分组,一般采用分位数法,将客户分为高、中、低三个层次。 4. 客户价评估:根据客户的RFM组合,对客户进行价评估,制定相应的营销策略。 下面是一个简单的RFM模型分析代码示例: ``` import pandas as pd import numpy as np # 1. 数据预处理 df = pd.read_csv('customer_data.csv') df['date'] = pd.to_datetime(df['date']) # 2. 计算RFM指标 today = pd.to_datetime('today') df_rfm = df.groupby('customer_id').agg({ 'date': lambda x: (today - x.max()).days, 'customer_id': 'count', 'amount': 'sum' }) df_rfm.rename(columns={'date': 'recency', 'customer_id': 'frequency', 'amount': 'monetary'}, inplace=True) # 3. 分组划分 quantiles = df_rfm.quantile(q=[0.25, 0.5, 0.75]) def r_score(x): if x <= quantiles['recency'][0.25]: return 4 elif x <= quantiles['recency'][0.5]: return 3 elif x <= quantiles['recency'][0.75]: return 2 else: return 1 def fm_score(x, c): if x <= quantiles[c][0.25]: return 1 elif x <= quantiles[c][0.5]: return 2 elif x <= quantiles[c][0.75]: return 3 else: return 4 df_rfm['r_score'] = df_rfm['recency'].apply(lambda x: r_score(x)) df_rfm['f_score'] = df_rfm['frequency'].apply(lambda x: fm_score(x, 'frequency')) df_rfm['m_score'] = df_rfm['monetary'].apply(lambda x: fm_score(x, 'monetary')) df_rfm['rfm_score'] = df_rfm['r_score'] * 100 + df_rfm['f_score'] * 10 + df_rfm['m_score'] # 4. 客户价评估 def label_customer(x): if x >= 111 and x <= 444: return '重要保持客户' elif x >= 445 and x <= 754: return '重要发展客户' elif x >= 755 and x <= 944: return '一般保持客户' else: return '一般挽留客户' df_rfm['customer_label'] = df_rfm['rfm_score'].apply(lambda x: label_customer(x)) ``` 以上代码中,我们先将原始数据读入Pandas DataFrame中,然后计算出每个客户的RFM指标,并按照分位数法进行分组划分,最后根据客户的RFM组合确定其价层次。 通过RFM模型的分析,我们可以更好地理解客户的行为习惯和价特征,从而制定更加精准有效的营销策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值