ArcGIS如何把多个tif影像合成一个tif影像

本文介绍在ArcGIS中如何使用镶嵌功能将多个tif影像合成一张。通过选择Arctoolbox的数据管理工具,具体步骤包括输入栅格、选择输出位置、设定波段数和镶嵌运算符等,以实现多张影像的无缝融合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ArcGIS如何把多个tif影像合成一个tif影像

0、如图我要把图中4个影像和成一个tif影像。

在这里插入图片描述
接下来就是如何合成了,这里我们采用镶嵌的功能。

镶嵌: 是指两个或多个图像的组合或合并。在 ArcGIS 中,您可以通过将多个栅格数据集镶嵌到一起来创建一个单个栅格数据集。此外,还可以通过一系列栅格数据集创建镶嵌数据集和虚拟镶嵌。

在这里插入图片描述

1、我们选择Arctoolbox——数据管理工具——栅格——栅格数据集——镶嵌至新栅格

在这里插入图片描述

2、点击镶嵌至新栅格

在这里插入图片描述

3、点击输入栅格,把要合成的栅格输入进去,这里输入了我要合成的4个tif。

在这里插入图片描述

4、选择输出位置以及最终的合成tif名称(注意添加后缀)。

在这里插入图片描述

5、波段数根据自己的图自己选择,我这里是1。

6、镶嵌运算符是最重要的一点,总共有7中运算符,这里我们详细介绍下:

在这里插入图片描述
FIRST: 第一个

“第一个”方法根据镶嵌列表中的第一个栅格数据集确定像素值。首先考虑现有的栅格数据集。

下图显示的是存在四个叠置像素并且选中了“第一个”选项时的结果。左侧第一个栅格数据集的值优先于下一个镶嵌的栅格数据集;因此,所得结果与第一组叠置像素相同。
在这里插入图片描述
LAST:最后一个

“最后一个”方法根据叠置的最后一个栅格数据集确定像素值。这是可用的最快镶嵌方法,也是默认设置。

下图显示的是选中“最后一个”选项时的镶嵌结果。对两个栅格数据集进行镶嵌时,输出镶嵌中将使用第二个栅格数据集中的叠置值。
在这里插入图片描述
BLEND:混合

“混合”方法使用基于距离权重的算法来确定叠置像素的值。叠置区域的输出像元值是通过对叠置的值进行混合来获得的;此混合值根据一种算法得出,该算法基于权重并且与叠置区域内像素到边的距离相关。此方法是计算量最大的镶嵌方法。

下图显示的是两个叠置的栅格数据集。x 所在的点具有两个值:数据集 R1 中的像素值(以红色标出)和数据集 R2 中的像素值(以蓝色标出)。由于 x 更靠近数据集 R2,因此 R2 的像素值在输出中具有更高的权重。
在这里插入图片描述
MEAN:平均值

“平均值”方法根据两个叠置的栅格数据集确定平均像素值。

下图显示的是选中“平均值”选项并且输出像素类型为“浮点型”时的镶嵌结果。对两个栅格数据集进行镶嵌时,两个叠置值的平均值将成为输出像素值。如果有多个栅格数据集发生叠置,则每次只处理两个栅格数据集。
在这里插入图片描述
MIXIMUM:最小值

“最小值”方法根据两个叠置的栅格数据集确定较低的像素值。

下图显示的是选中“最小值”选项时的镶嵌结果。对两个栅格数据集进行镶嵌时,输出镶嵌中将使用两个栅格数据集中的最小值。
在这里插入图片描述
MAXIMUM:最大值

“最大值”方法根据两个叠置的栅格数据集确定较高的像素值。

下图显示的是选中“最大值”选项时的镶嵌结果。对两个栅格数据集进行镶嵌时,输出镶嵌中将使用两个栅格数据集中的最大值。
在这里插入图片描述
SUM:总和

“总和”方法根据叠置栅格数据集确定添加在一起的所有像素的总值。

下图显示的是选中“总和”选项时的镶嵌结果。对两个栅格数据集进行镶嵌时,输出镶嵌中将使用两个栅格数据集中的像素总值。
在这里插入图片描述

镶嵌运算符总共如上7种,每种合成来的最终图像都不相同,可以根据自己的实际情况选择,这里我选择maximum
在这里插入图片描述

7、点击确定,得到合成的图像。

在这里插入图片描述

### 使用Python实现多TIF影像的拼接 为了将多个TIF文件合并为单一TIF文件,可以采用两种主要方法:基于GDAL库的方法和基于ArcPy模块的方法。以下是具体实现方式。 #### 方法一:使用GDAL库中的`gdal_merge.py` GDAL是一个强大的开源地理空间数据处理库,其中提供了脚本工具`gdal_merge.py`用于快速合并多个栅格文件。这种方法无需编写复杂代码即可完成任务。 ```python import subprocess def merge_tifs(input_files, output_file): command = ['gdal_merge.py', '-o', output_file] + input_files subprocess.call(command) input_files = ["file1.tif", "file2.tif", "file3.tif"] # 输入TIF文件列表 output_file = "merged_output.tif" # 输出合并后的TIF文件路径 merge_tifs(input_files, output_file) ``` 上述代码调用了外部命令`gdal_merge.py`来执行合并操作[^3]。 #### 方法二:使用GDAL库直接读写数据 如果希望完全控制整个过程而不依赖于外部脚本,则可以直接利用GDAL API编程实现: ```python from osgeo import gdal def merge_rasters(file_list, out_path): vrt_options = gdal.BuildVRTOptions(resampleAlg='nearest') vrt_ds = gdal.BuildVRT('', file_list, options=vrt_options) gdal.Translate(out_path, vrt_ds, format="GTiff") files_to_merge = ["file1.tif", "file2.tif", "file3.tif"] output_merged_file = "final_mosaic.tif" merge_rasters(files_to_merge, output_merged_file) ``` 此方法先构建了一个虚拟格式(VRT)作为中间产物,再将其转换为目标GeoTIFF文件。 #### 方法三:借助ArcPy模块自动创建镶嵌数据集 对于拥有Esri ArcGIS许可的用户来说,还可以考虑使用其内置功能——通过arcpy模块创建并填充镶嵌数据集来进行更复杂的管理与优化工作流。 ```python import arcpy workspace = r"C:\path\to\your.gdb" arcpy.CreateFileGDB_management(r"C:\path\to", "your") # 创建镶嵌数据集 arcpy.management.CreateMosaicDataset(workspace, "mosaic_dataset_name", "PROJCS['WGS_1984_UTM_Zone_XXN']") # 添加影像到镶嵌数据集中 raster_paths = [r"path/to/file1.tif", r"path/to/file2.tif"] for raster in raster_paths: arcpy.AddRastersToMosaicDataset_management( workspace + "/mosaic_dataset_name", "Raster Dataset", raster, update_cellsize_ranges=True ) # 导出最终结果为单个TIF export_path = r"C:\path\to\exported_single_image.tif" arcpy.MosaicToNewRaster_management( workspace + "/mosaic_dataset_name", export_path, "single_band", number_of_bands=1 ) ``` 这段代码展示了如何按照标准流程设置环境变量、定义投影坐标系以及逐步导入源图像至目标镶嵌集合中最后导出成果[^1][^2]。 --- ### 总结 以上三种方案分别适用于不同场景和技术背景下的需求。推荐优先尝试轻量级解决方案即GDAL相关函数;而对于企业内部项目或者已有成熟框架支持的情况下可选用arcgis/arcpy路线。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值