神经网络bn公式_BN,LN,IN,GN都是什么?不同归一化方法的比较

本文详细介绍了批处理归一化(BN)、层归一化(LN)、实例归一化(IN)和组归一化(GN)的区别与计算过程,并探讨了它们在不同场景下的适用性。BN常用于计算机视觉,但受限于批大小;GN则在小批量情况下表现良好,是BN的有效替代方案。
摘要由CSDN通过智能技术生成

33fb7282995c347a3d8a48663c55b58f.png

批处理归一化(BN)已经成为许多先进深度学习模型的重要组成部分,特别是在计算机视觉领域。它通过批处理中计算的平均值和方差来规范化层输入,因此得名。要使BN工作,批大小必须足够大,通常至少为32。但是,在一些情况下,我们不得不满足于小批量:

当每个数据样本高度消耗内存时,例如视频或高分辨率图像

当我们训练一个很大的神经网络时,它只留下很少的GPU内存来处理数据

因此,我们需要BN的替代品,它能在小批量下很好地工作。组归一化(GN)是一种最新的规范化方法,可以避免利用批处理维,因此与批处理大小无关。

不同的归一化方法

为了促进GN的表述,我们将首先看一下以前的一些标准化方法。

xᵢ ← (xᵢ - ᵢ) / √( ᵢ² + )

对于每个系数xᵢ输入特性。 ᵢ和 ᵢ²的均值和方差计算的集合Sᵢ系数,和 是一个小的常数数值稳定,避免除零。唯一的区别是集Sᵢ是如何选择的。

为说明归一化方法的计算,我们考虑一批N = 3,输入特征a, b, c,它们有通道c = 4,高度H = 1,宽度W = 2:

a = [ [[2, 3]], [[5, 7]], [[11, 13]], [[17, 19]] ]
b = [ [[0, 1]], [[1, 2]], [[3, 5]], [[8, 13]] ]
c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值