第一次输出,再烂也要写,写多了就写的好了
现状
1.CNN
CNN在计算机视觉方面取得了许多惊人的成绩,无论是得益于大量的带标记数据,强大的计算资源或多样的框架,CNN能取得理想的结果归根结底是因为其具有大量可学习的参数,数量从几千万到几亿。然而这反过来给内存和计算资源带来巨大负担,因此在诸如移动设备,FPGA等计算和功耗预算有限的设备上部署深层CNN极具挑战性。
2.量化CNN
在训练,前馈测试或两者同时进行的CNN加速和压缩方面已经做出了巨大努力。 在现有方法中,网络量化方法的类别引起了研究和开发人员的极大关注。
然而,这些量化方法都有两个问题:第一个问题是CNN量化方法的精度损失不可忽略,另一个问题是为确保收敛而增加训练迭代的次数。
为此,该论文提出了一种新颖的增量网络量化方法
INQ基本原理
INQ目的
INQ旨在将任意经过训练的全精度模型转换为权值为2的幂次方或0的低精度模型。
创新点
1.对网络中的参数进行三个互相依赖的操作:参数分组,量化和重训练。
参数分组:将各层参数分为不相交的两组。
量化:第一组中的权重通过可变长度编码方法量化为2或0的幂,从而形成了原始模型的低精度基础。
重训练: