记录:INQ增量神经网络文献

本文介绍了增量网络量化(INQ)方法,旨在解决CNN在资源受限设备上的部署问题。INQ通过对网络参数进行分组、量化和重训练,实现全精度模型到低精度模型的转换,同时减少精度损失。实验表明,INQ在多种CNN架构上提高了精度,甚至在某些情况下超过了全精度基准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次输出,再烂也要写,写多了就写的好了


现状

1.CNN

CNN在计算机视觉方面取得了许多惊人的成绩,无论是得益于大量的带标记数据,强大的计算资源或多样的框架,CNN能取得理想的结果归根结底是因为其具有大量可学习的参数,数量从几千万到几亿。然而这反过来给内存和计算资源带来巨大负担,因此在诸如移动设备,FPGA等计算和功耗预算有限的设备上部署深层CNN极具挑战性。

2.量化CNN

在训练,前馈测试或两者同时进行的CNN加速和压缩方面已经做出了巨大努力。 在现有方法中,网络量化方法的类别引起了研究和开发人员的极大关注。
然而,这些量化方法都有两个问题:第一个问题是CNN量化方法的精度损失不可忽略,另一个问题是为确保收敛而增加训练迭代的次数。
为此,该论文提出了一种新颖的增量网络量化方法


INQ基本原理

INQ目的
INQ旨在将任意经过训练的全精度模型转换为权值为2的幂次方或0的低精度模型。
创新点
1.对网络中的参数进行三个互相依赖的操作:参数分组,量化和重训练。

参数分组:将各层参数分为不相交的两组。
量化:第一组中的权重通过可变长度编码方法量化为2或0的幂,从而形成了原始模型的低精度基础。
重训练:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值