本博文是博主在阿里云大学学习记录的笔记,未经博主允许禁止随意转载。
数据集获取方法:
链接:https://pan.baidu.com/s/1b6Nc3-QmHhQjH_uxZg3WCQ
提取码:ndv9
本实验将学习如何使用Python实现KNN回归算法。
说明:本实验的程序文件与数据在启动jupyter notebook后,就会在主目录中显示,可以直接打开查看并运行,但为了增加熟练度,达到最佳的学习效果,建议大家手动输入。
①导入程序运行所需的库。
import numpy as np
import pandas as pd
②加载鸢尾花数据集。并删除不需要的Id列。然后对数据集进行去重处理。
data = pd.read_csv(r"Iris.csv")
# 删除不需要的ID与Species列(特征)。因为现在进行回归预测,类别信息就没有用处了。
data.drop(["Id", "Species"], axis=1, inplace=True)
# 删除重复的记录
data.drop_duplicates(inplace=True)
③定义KNN类,用于回归。并在类中定义初始化方法与训练与预测方法。
class KNN:
"""使用Python实现K近邻算法。(回归预测)
该算法用于回归预测,根据前3个特征