AI工程师成长之路-KNN回归算法实现

这篇博文介绍了如何使用Python实现KNN回归算法,通过阿里云大学的学习笔记详细阐述了数据集获取、鸢尾花数据集处理、KNN类定义、训练测试集构建、预测结果分析以及可视化展示的过程。
摘要由CSDN通过智能技术生成

本博文是博主在阿里云大学学习记录的笔记,未经博主允许禁止随意转载

数据集获取方法:

链接:https://pan.baidu.com/s/1b6Nc3-QmHhQjH_uxZg3WCQ 
提取码:ndv9

本实验将学习如何使用Python实现KNN回归算法。

说明:本实验的程序文件与数据在启动jupyter notebook后,就会在主目录中显示,可以直接打开查看并运行,但为了增加熟练度,达到最佳的学习效果,建议大家手动输入。

①导入程序运行所需的库。

import numpy as np
import pandas as pd

②加载鸢尾花数据集。并删除不需要的Id列。然后对数据集进行去重处理。

data = pd.read_csv(r"Iris.csv")
# 删除不需要的ID与Species列(特征)。因为现在进行回归预测,类别信息就没有用处了。
data.drop(["Id", "Species"], axis=1, inplace=True)
# 删除重复的记录
data.drop_duplicates(inplace=True)

③定义KNN类,用于回归。并在类中定义初始化方法与训练与预测方法。

class KNN:
    """使用Python实现K近邻算法。(回归预测)
    
    该算法用于回归预测,根据前3个特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值