圆锥曲线,思路简单计算复杂,你准备好了吗?
先介绍两个原理



图中B点不断向M点靠近,则两点无限接近后为一条水平直线
椭圆的圆系方程
已知四条互相相交的直线,则其外接所有圆(或椭圆)的圆系方程可设为两对边方程乘积加(或减)参数(
【题目】已知椭圆C:

【思路分析】如果用韦达定理计算会算出超级变态表达式,计算会自闭。
设AB的方程 利用圆系方程设椭圆=标准方程 化简 对比系数
转化为含参直线比过定点 求解定点
【正解】设AB为Ax+By+C=0 设QA、QB分别为
(此处AB的对边可看做是直线QQ(两点重合,可看作为y-2=0))
由椭圆的圆系方程性质可知
即
观察两边,欲约去(y-2)则对
则①式可化简为
即
两边消去x-2,且因为
继续化简得
使得
则有
联立⑤⑥解得
故该定点为
【结论推广】对于椭圆