不相交轮换的乘积怎么求_不相交的轮换.ppt

不相交的轮换

前页 前页 前页 * 目录 后页 返回 * 前页 定理1.6.4 --置换~ 不相交的轮换 §1.6置换群与对称群 一、置换群的定义 定理1.6.1 例1 例2 定理1.6.2 ---对称群的阶 例5 例3 定义1.6.2 ---不相交的轮换 例4 例6 定理1.6.5 ---置换~对换 定理1.6.3 ---轮换的性质 二、置换群的构成 定义1.6.1 ---轮换 三、置换群的分类 定理1.6.6 ---唯一性 定义1.6.3 ---偶、奇置换 定理1.6.8 ---构成子群 定义1.6.4 ---交换群 定理1.6.7 ---奇、偶置换个数 §1.6置换群与对称群 例8 例7 一、置换群的定义 在§1.4中, 我们证明了非空集合 的全体可逆 变换关于映射的合成构成集合 的对称群 , 并且 把 的任一子群叫做 的一个变换群. 如果 是由 个元素组成的有限集合, 则通常把 的一个可逆变换 叫做一个 阶置换(permutation), 把 叫做 次对称群, 并把 记作 , 同时称 的子群为置换群(permutation group). 定理1.6.1 每一个有限群都同构于一个置换群. 定理1.6.2 次对称群 的阶是 由于集合 的元素本身与我们所讨论的问题无 关, 所以可不妨记 以下, 我们总假定 就代表这个集合. 设 为 的任 一置换, 如果 把1映成 ,2映成 , , 映成 , 则 可以把这个置换记作 其中第一行表示集合 的 个元素, 第二行的元索 表示第一行的元素 在映射 的作用下所对应的 象. 由于集合 的元素的次序与映射 是无关的, 所 以我们也可把 表示成 等等, 只要在 下两行的元素上下对应就可以了. 观察(1.6.1)式我们发现, 如果固定第一行元素 的次序, 则第二行 就是的一个排列, 且每一 个置换都惟一对应了一个这样的排列. 反之, 每一个 级排列也可按(1.6.1)式得到惟一的一个 阶置换. 由于 个数共有 个 级排列, 所以 个元素的集合共 有 个 阶置换. 例1 写出 的全部元素. 解 按(1.6.1)式, 我们只要在每个置换的第一行 按顺序写上1,2,3, 再在第二行分别写上,1,2,3的全部6 个排列即可. 据此, 我们得到 的六个元素

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值