跟踪算法原理_传统目标跟踪:kalman

本文介绍了目标跟踪在智能应用中的重要性,包括周界防范、吸烟检测等,通常采用"深度学习模型+目标跟踪"的方式。重点讲解了卡尔曼滤波(Kalman)作为传统跟踪算法的基本原理和应用场景,尽管在深度学习跟踪算法中效果一般,但在硬件限制和简单场景下,Kalman仍具有较高性价比。此外,还提到了目标跟踪的几个关键功能,如目标关联、预测和校正。最后,列举了目标跟踪在目标计数、去除重复报警、绘制运动轨迹等领域的应用。
摘要由CSDN通过智能技术生成

a0a59e7ad1e060ba4969b21ef37f44be.png

1、应用简介

在cv领域所做的一些智能应用功能,比如周界防范、吸烟检测等等一系列事件报警的需求,基本上是“目标检测+目标跟踪+目标识别”的算法流程模型,当然现在深度学习模型流行,检测识别基本上一个模型就搞定了,所以流程一般是“深度学习模型+目标跟踪”的方式。

目标跟踪的应用领域也很多,典型的就是军工方向,比如跟踪飞机、坦克,或者红外低空飞行小目标等等,还有在安防领域中的枪球联动功能,这些应用对于跟踪的使用就比较纯粹,真正用到了跟踪中的算法核心:特征匹配。比如战斗机上用的跟踪飞机目标功能,需要驾驶员手动锁定飞机、或者目标检测算法检测出可疑目标,然后飞行员手动锁定,目标锁定之后,跟踪算法便一直将目标跟踪住,同时后台伺服系统会将目标拉到摄像头视频图像的中心,这样就实现了跟踪飞机的功能;至于枪球联动功能,是“枪机+球机”组合实现对可以目标跟踪的功能,枪机实现目标检测并锁定可疑目标,目标锁定之后,枪机将可疑目标交给球机继续跟踪,球机可以变焦变倍,这一套系统可以达到“枪机在大视场发现所有可疑目标,球机在大焦距小视场下看细节”的目的。

2、目标跟踪

跟踪算法有很多,传统的有kalman、mean-shift、管道跟踪等等;最近几年目标有kcf,以及大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值