荣耀是linux哪个系统,荣耀MagicBook 15最终以Linux为主要操作系统公开

MagicBook是HONOR在2018年发布的第一款笔记本电脑系列。此后,后续机型在中国推出,而没有任何全球发布。尽管笔记本电脑系列并不受欢迎,但它们绝对是您可以以合理的价格购买的高于平均水平的笔记本电脑。最近,在京东商城上出现的一系列设备中发现了该系列的新型号。

2e0cb52008ec7a3eeede91e62750756a.png

新的HONOR MagicBook 15仅会带有Intel变体,与以前的版本不同,后者也提供了另一个AMD Ryzen变体。据说它还有两个存储选项,分别是256GB和512GB SSD。电源按钮上还将有一个指纹传感器,以确保安全。

为了美观起见,笔记本电脑似乎仍保持其MacBook式设计,同时在配色方案上采取了不同的方向。我们从下面的图片中可以看到HONOR MagicBook 15,该笔记本电脑将配备银色机身,在边缘增加了蓝色的触感。边缘的颜色也以某种方式组合了徽标的颜色,这些徽标的颜色也会出现在笔记本电脑上。

但是,如果您正在寻找Windows操作系统笔记本电脑,那么这可能不是适合您的笔记本电脑。新的HONOR MagicBook将专门运行Linux作为主要操作系统。目前还没有关于HONOR MagicBook 15的价格信息。希望笔记本电脑将保持在中端价格范围内,该价格范围将继续提供高标准的用户体验。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时候联系我们修改或删除,多谢

<think>好的,用户想在荣耀MagicBook 15上配置深度学习环境,包括CUDA、cuDNN、TensorFlow或PyTorch。我需要一步步指导他们,同时结合他们提供的引用信息。 首先,确认笔记本的硬件和系统。根据引用2和3,MagicBook 15可能有不同的型号,比如酷睿i5或锐龙版,需要先确定用户的具体型号。不过用户提到的是安装CUDA,所以可能是指带有NVIDIA显卡的版本。但荣耀MagicBook 15有些型号可能只有集显,比如引用4提到的是MagicBook 2018款,有MX150显卡。用户需要先检查自己的笔记本是否有独立GPU,比如NVIDIA的型号,否则可能无法安装CUDA。这一步很关键,如果只有集显,可能无法进行GPU加速的深度学习。 然后,安装驱动。引用1提到安装NVIDIA Studio驱动,但用户可能使用的是普通驱动。需要指导他们更新到最新驱动,或者Studio驱动。需要访问NVIDIA官网或者使用GeForce Experience来安装。引用4中的MX150可能支持CUDA,但需要查看计算能力是否足够,比如MX150的计算能力可能较低,影响性能。 接下来是安装CUDA和cuDNN。根据引用4,用户之前创建了conda环境,可能需要使用conda来安装CUDA工具包,避免与系统环境冲突。需要建议用户创建虚拟环境,如conda create -n pytorch python=3.x。然后安装对应版本的CUDA和cuDNN,可能通过conda直接安装,这样会自动处理依赖。例如,conda install cudatoolkit=11.3 cudnn=8.2,然后安装PyTorch或TensorFlow的GPU版本。 安装框架时,要确保版本匹配。比如PyTorch的官方命令可能指定cudatoolkit版本,用户需要根据CUDA版本选择。引用4中使用的是conda安装,可能更便捷。同时,用户可能需要设置环境变量,如CUDA_HOME,但conda安装可能自动处理这些。 验证安装部分,需要指导用户运行简单的Python代码检查CUDA是否可用,比如torch.cuda.is_available()。如果遇到问题,可能需要检查驱动版本与CUDA的兼容性,或者重新安装对应版本。 注意事项方面,MX150这样的显卡计算能力可能有限,可能影响训练速度,需要提醒用户可能仅适合学习或小型项目。另外,系统备份很重要,引用2和3提到原厂系统备份,建议用户安装前备份系统,避免出现问题。 最后生成相关问题,可能涉及驱动安装问题、虚拟环境管理、框架版本选择等。</think>### 逐步配置指南 以下是在荣耀MagicBook 15上搭建深度学习环境的步骤(以NVIDIA显卡为例): #### 1. **确认硬件与系统兼容性** - 检查显卡型号:需为NVIDIA显卡(如MX150/MX250等),支持CUDA加速。 - 操作系统:建议使用Windows 10/11(原厂系统已预装驱动,见引用[2][^2]和[3][^3])。 #### 2. **安装NVIDIA显卡驱动** - 更新至最新驱动程序: - 访问[NVIDIA官网](https://www.nvidia.cn/Download/index.aspx)或使用GeForce Experience更新驱动[^1]。 - 验证驱动安装: ```bash nvidia-smi # 查看显卡信息与CUDA版本 ``` #### 3. **安装CUDA与cuDNN** - **CUDA Toolkit**: - 根据PyTorch/TensorFlow官方要求选择版本(如CUDA 11.3)。 - 通过conda安装(推荐): ```bash conda create -n dl_env python=3.9 conda activate dl_env conda install cudatoolkit=11.3 cudnn=8.2 # 自动匹配依赖[^4] ``` - **手动安装(可选)**: - 从[NVIDIA CUDA Archive](https://developer.nvidia.com/cuda-toolkit-archive)下载对应版本,按提示安装。 #### 4. **安装深度学习框架** - **PyTorch GPU版**: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.3 -c pytorch -c nvidia ``` - **TensorFlow GPU版**: ```bash pip install tensorflow-gpu==2.6.0 # 需与CUDA版本匹配 ``` #### 5. **验证环境** - **PyTorch验证**: ```python import torch print(torch.cuda.is_available()) # 应输出True ``` - **TensorFlow验证**: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) # 应显示GPU信息 ``` #### 6. **注意事项** - 若使用MX系列显卡(如MX150),需确认其计算能力(如Compute Capability 6.1)是否满足框架最低要求。 - 建议通过conda管理环境,避免依赖冲突。 - 安装前备份系统(参考引用[2][^2]的方法)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值