iris数据集用各种分类方法分类_算法入门(一)分类 with Iris

本文通过Iris数据集介绍分类问题,探讨了分类算法背景,包括分类与回归的区别。利用EDA分析数据相关性,采用SVM、Logistic Regression、Decision Tree和KNN进行建模,并讨论了特征相关性对模型准确性的影响。
摘要由CSDN通过智能技术生成

ed8fd711eb063cf387fd47fa4850b413.png

一、导入模块和数据

数据源:Iris Species

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

iris = pd.read_csv('C:/Dataset/201908_ML_with_iris/iris.csv')

iris.head()

b7877c0e3e960a1ccba256b15d4759a4.png
iris.drop('Unnamed: 0',axis = 1,inplace = True)

iris.columns = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
       'Species']

iris.info()

9069aea2c883dbfe97f54ed446504784.png
iris.Species.value_counts()

9322665a110ee4d191cc61e4f75e735c.png

花瓣petal,花萼sepal说明

e24a81ee091cb14c8a0f27a64cb2bc76.png

二、EDA 数据探索

三种品类花萼长宽分布

fig = iris[iris.Species=='setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',color='r',label = 'setosa')
iris[iris.Species=='versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',color='b',label = 'v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值